• Previous Article
    Nonconvex TGV regularization model for multiplicative noise removal with spatially varying parameters
  • IPI Home
  • This Issue
  • Next Article
    Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line
February  2019, 13(1): 149-157. doi: 10.3934/ipi.2019008

Note on Calderón's inverse problem for measurable conductivities

Department of Mathematics, University of Genoa, Via Dodecaneso 35, 16146 Genova, Italy

Received  February 2018 Revised  June 2018 Published  December 2018

The unique determination of a measurable conductivity from the Dirichlet-to-Neumann map of the equation ${\rm{div}} (σ \nabla u) = 0$ is the subject of this note. A new strategy, based on Clifford algebras and a higher dimensional analogue of the Beltrami equation, is here proposed. This represents a possible first step for a proof of uniqueness for the Calderón problem in three and higher dimensions in the $L^\infty$ case.

Citation: Matteo Santacesaria. Note on Calderón's inverse problem for measurable conductivities. Inverse Problems & Imaging, 2019, 13 (1) : 149-157. doi: 10.3934/ipi.2019008
References:
[1]

G. Alessandrini, Stable determination of conductivity by boundary measurements, Applicable Analysis, 27 (1988), 153-172. doi: 10.1080/00036818808839730. Google Scholar

[2]

G. Alessandrini and R. Magnanini, Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions, SIAM Journal on Mathematical Analysis, 25 (1994), 1259-1268. doi: 10.1137/S0036141093249080. Google Scholar

[3]

K. AstalaM. Lassas and L. Päivärinta, The borderlines of the invisibility and visibility for Calderón's inverse problem, Anal. PDE, 9 (2016), 43-98. doi: 10.2140/apde.2016.9.43. Google Scholar

[4]

K. Astala and L. Päivärinta, Calderón's inverse conductivity problem in the plane, Annals of Mathematics, 163 (2006), 265-299. doi: 10.4007/annals.2006.163.265. Google Scholar

[5]

M. I. Belishev and A. F. Vakulenko, On algebras of harmonic quaternion fields in $\mathbb{R}^3$, arXiv preprint, arXiv: 1710.00577, 2017.Google Scholar

[6]

M. I. Belishev, On algebras of three-dimensional quaternion harmonic fields, Journal of Mathematical Sciences, 226 (2017), 701-710. doi: 10.1007/s10958-017-3559-1. Google Scholar

[7]

M. I. Belishev, Some remarks on the impedance tomography problem for 3d-manifolds, Cubo, 7 (2005), 43-55. Google Scholar

[8]

L. Bers and L. Nirenberg, On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications, Convegno Internazionale sulle Equazioni Lineari alle Derivate Parziali, Trieste, 1954.Google Scholar

[9]

F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, vol. 76, Pitman Books Limited, 1982. Google Scholar

[10]

R. M. Brown and R. H. Torres, Uniqueness in the inverse conductivity problem for conductivities with 3/2 derivatives in Lp, p > 2n, The Journal of Fourier Analysis and Applications, 9 (2003), 563-574. doi: 10.1007/s00041-003-0902-3. Google Scholar

[11]

A. Calderón, On an inverse boundary value problem,, Seminar on Numerical Analysis and its Applications to Continuum Physics (Soc. Brasil. Mat., Rio de Janeiro), (1980), 65-73. Google Scholar

[12]

P. Caro and K. M. Rogers, Global uniqueness for the Calderón problem with Lipschitz conductivities, in Forum of Mathematics, Pi, 4 (2016), e2, 28pp. doi: 10.1017/fmp.2015.9. Google Scholar

[13]

B. B. Delgado and R. M. Porter, General solution of the inhomogeneous div-curl system and consequences, Advances in Applied Clifford Algebras, 27 (2017), 3015-3037. doi: 10.1007/s00006-017-0805-z. Google Scholar

[14]

B. B. Delgado and R. M. Porter, Hilbert transform for the three-dimensional vekua equation, arXiv preprint, arXiv: 1803.03293, 2018.Google Scholar

[15]

L. D. Faddeev, Increasing solutions of the Schrödinger equation, Soviet Physics Doklady, 10 (1966), 1033-1035. Google Scholar

[16]

K. Gürlebeck and W. Sprößig, Quaternionic analysis and elliptic boundary value problems, Int. Series of Numerical Mathematics, 89.Google Scholar

[17]

B. Haberman, Uniqueness in Calderón problem for conductivities with unbounded gradient, Communications in Mathematical Physics, 340 (2015), 639-659. doi: 10.1007/s00220-015-2460-3. Google Scholar

[18]

C. LiA. G. McIntosh and T. Qian, Clifford algebras, Fourier transforms and singular convolution operators on Lipschitz surfaces, Revista Matematica Iberoamericana, 10 (1994), 665-721. doi: 10.4171/RMI/164. Google Scholar

[19]

A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Annals of Mathematics, 143 (1996), 71-96. doi: 10.2307/2118653. Google Scholar

[20]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Annals of Mathematics, 125 (1987), 153-169. doi: 10.2307/1971291. Google Scholar

[21]

V. I. Vekua, Generalized Analytic Functions, Pergamon Press London, 1962. Google Scholar

show all references

References:
[1]

G. Alessandrini, Stable determination of conductivity by boundary measurements, Applicable Analysis, 27 (1988), 153-172. doi: 10.1080/00036818808839730. Google Scholar

[2]

G. Alessandrini and R. Magnanini, Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions, SIAM Journal on Mathematical Analysis, 25 (1994), 1259-1268. doi: 10.1137/S0036141093249080. Google Scholar

[3]

K. AstalaM. Lassas and L. Päivärinta, The borderlines of the invisibility and visibility for Calderón's inverse problem, Anal. PDE, 9 (2016), 43-98. doi: 10.2140/apde.2016.9.43. Google Scholar

[4]

K. Astala and L. Päivärinta, Calderón's inverse conductivity problem in the plane, Annals of Mathematics, 163 (2006), 265-299. doi: 10.4007/annals.2006.163.265. Google Scholar

[5]

M. I. Belishev and A. F. Vakulenko, On algebras of harmonic quaternion fields in $\mathbb{R}^3$, arXiv preprint, arXiv: 1710.00577, 2017.Google Scholar

[6]

M. I. Belishev, On algebras of three-dimensional quaternion harmonic fields, Journal of Mathematical Sciences, 226 (2017), 701-710. doi: 10.1007/s10958-017-3559-1. Google Scholar

[7]

M. I. Belishev, Some remarks on the impedance tomography problem for 3d-manifolds, Cubo, 7 (2005), 43-55. Google Scholar

[8]

L. Bers and L. Nirenberg, On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications, Convegno Internazionale sulle Equazioni Lineari alle Derivate Parziali, Trieste, 1954.Google Scholar

[9]

F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, vol. 76, Pitman Books Limited, 1982. Google Scholar

[10]

R. M. Brown and R. H. Torres, Uniqueness in the inverse conductivity problem for conductivities with 3/2 derivatives in Lp, p > 2n, The Journal of Fourier Analysis and Applications, 9 (2003), 563-574. doi: 10.1007/s00041-003-0902-3. Google Scholar

[11]

A. Calderón, On an inverse boundary value problem,, Seminar on Numerical Analysis and its Applications to Continuum Physics (Soc. Brasil. Mat., Rio de Janeiro), (1980), 65-73. Google Scholar

[12]

P. Caro and K. M. Rogers, Global uniqueness for the Calderón problem with Lipschitz conductivities, in Forum of Mathematics, Pi, 4 (2016), e2, 28pp. doi: 10.1017/fmp.2015.9. Google Scholar

[13]

B. B. Delgado and R. M. Porter, General solution of the inhomogeneous div-curl system and consequences, Advances in Applied Clifford Algebras, 27 (2017), 3015-3037. doi: 10.1007/s00006-017-0805-z. Google Scholar

[14]

B. B. Delgado and R. M. Porter, Hilbert transform for the three-dimensional vekua equation, arXiv preprint, arXiv: 1803.03293, 2018.Google Scholar

[15]

L. D. Faddeev, Increasing solutions of the Schrödinger equation, Soviet Physics Doklady, 10 (1966), 1033-1035. Google Scholar

[16]

K. Gürlebeck and W. Sprößig, Quaternionic analysis and elliptic boundary value problems, Int. Series of Numerical Mathematics, 89.Google Scholar

[17]

B. Haberman, Uniqueness in Calderón problem for conductivities with unbounded gradient, Communications in Mathematical Physics, 340 (2015), 639-659. doi: 10.1007/s00220-015-2460-3. Google Scholar

[18]

C. LiA. G. McIntosh and T. Qian, Clifford algebras, Fourier transforms and singular convolution operators on Lipschitz surfaces, Revista Matematica Iberoamericana, 10 (1994), 665-721. doi: 10.4171/RMI/164. Google Scholar

[19]

A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Annals of Mathematics, 143 (1996), 71-96. doi: 10.2307/2118653. Google Scholar

[20]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Annals of Mathematics, 125 (1987), 153-169. doi: 10.2307/1971291. Google Scholar

[21]

V. I. Vekua, Generalized Analytic Functions, Pergamon Press London, 1962. Google Scholar

[1]

Bastian Gebauer. Localized potentials in electrical impedance tomography. Inverse Problems & Imaging, 2008, 2 (2) : 251-269. doi: 10.3934/ipi.2008.2.251

[2]

Fabrice Delbary, Kim Knudsen. Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem. Inverse Problems & Imaging, 2014, 8 (4) : 991-1012. doi: 10.3934/ipi.2014.8.991

[3]

Kari Astala, Jennifer L. Mueller, Lassi Päivärinta, Allan Perämäki, Samuli Siltanen. Direct electrical impedance tomography for nonsmooth conductivities. Inverse Problems & Imaging, 2011, 5 (3) : 531-549. doi: 10.3934/ipi.2011.5.531

[4]

Ville Kolehmainen, Matti Lassas, Petri Ola, Samuli Siltanen. Recovering boundary shape and conductivity in electrical impedance tomography. Inverse Problems & Imaging, 2013, 7 (1) : 217-242. doi: 10.3934/ipi.2013.7.217

[5]

Liliana Borcea, Fernando Guevara Vasquez, Alexander V. Mamonov. Study of noise effects in electrical impedance tomography with resistor networks. Inverse Problems & Imaging, 2013, 7 (2) : 417-443. doi: 10.3934/ipi.2013.7.417

[6]

Dong liu, Ville Kolehmainen, Samuli Siltanen, Anne-maria Laukkanen, Aku Seppänen. Estimation of conductivity changes in a region of interest with electrical impedance tomography. Inverse Problems & Imaging, 2015, 9 (1) : 211-229. doi: 10.3934/ipi.2015.9.211

[7]

Gen Nakamura, Päivi Ronkanen, Samuli Siltanen, Kazumi Tanuma. Recovering conductivity at the boundary in three-dimensional electrical impedance tomography. Inverse Problems & Imaging, 2011, 5 (2) : 485-510. doi: 10.3934/ipi.2011.5.485

[8]

Nicolay M. Tanushev, Luminita Vese. A piecewise-constant binary model for electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (2) : 423-435. doi: 10.3934/ipi.2007.1.423

[9]

Nuutti Hyvönen, Lassi Päivärinta, Janne P. Tamminen. Enhancing D-bar reconstructions for electrical impedance tomography with conformal maps. Inverse Problems & Imaging, 2018, 12 (2) : 373-400. doi: 10.3934/ipi.2018017

[10]

Kimmo Karhunen, Aku Seppänen, Jari P. Kaipio. Adaptive meshing approach to identification of cracks with electrical impedance tomography. Inverse Problems & Imaging, 2014, 8 (1) : 127-148. doi: 10.3934/ipi.2014.8.127

[11]

Jérémi Dardé, Harri Hakula, Nuutti Hyvönen, Stratos Staboulis. Fine-tuning electrode information in electrical impedance tomography. Inverse Problems & Imaging, 2012, 6 (3) : 399-421. doi: 10.3934/ipi.2012.6.399

[12]

Daomin Cao, Ezzat S. Noussair, Shusen Yan. On the profile of solutions for an elliptic problem arising in nonlinear optics. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 649-666. doi: 10.3934/dcds.2004.11.649

[13]

Melody Dodd, Jennifer L. Mueller. A real-time D-bar algorithm for 2-D electrical impedance tomography data. Inverse Problems & Imaging, 2014, 8 (4) : 1013-1031. doi: 10.3934/ipi.2014.8.1013

[14]

Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, Jari P. Kaipio, Erkki Somersalo. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Stochastic extension of the boundary map. Inverse Problems & Imaging, 2015, 9 (3) : 767-789. doi: 10.3934/ipi.2015.9.767

[15]

Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, David Isaacson, Jari P. Kaipio, Debra McGivney, Erkki Somersalo, Joseph Volzer. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part I: Theory and preliminary results. Inverse Problems & Imaging, 2015, 9 (3) : 749-766. doi: 10.3934/ipi.2015.9.749

[16]

Lassi Roininen, Janne M. J. Huttunen, Sari Lasanen. Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography. Inverse Problems & Imaging, 2014, 8 (2) : 561-586. doi: 10.3934/ipi.2014.8.561

[17]

Nuutti Hyvönen, Harri Hakula, Sampsa Pursiainen. Numerical implementation of the factorization method within the complete electrode model of electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (2) : 299-317. doi: 10.3934/ipi.2007.1.299

[18]

Helmut Harbrecht, Thorsten Hohage. A Newton method for reconstructing non star-shaped domains in electrical impedance tomography. Inverse Problems & Imaging, 2009, 3 (2) : 353-371. doi: 10.3934/ipi.2009.3.353

[19]

Sarah Jane Hamilton, Andreas Hauptmann, Samuli Siltanen. A data-driven edge-preserving D-bar method for electrical impedance tomography. Inverse Problems & Imaging, 2014, 8 (4) : 1053-1072. doi: 10.3934/ipi.2014.8.1053

[20]

Fabrice Delbary, Rainer Kress. Electrical impedance tomography using a point electrode inverse scheme for complete electrode data. Inverse Problems & Imaging, 2011, 5 (2) : 355-369. doi: 10.3934/ipi.2011.5.355

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (54)
  • HTML views (153)
  • Cited by (0)

Other articles
by authors

[Back to Top]