# American Institute of Mathematical Sciences

• Previous Article
On the transmission eigenvalue problem for the acoustic equation with a negative index of refraction and a practical numerical reconstruction method
• IPI Home
• This Issue
• Next Article
Asymptotic expansions of transmission eigenvalues for small perturbations of media with generally signed contrast
August  2018, 12(4): 993-1031. doi: 10.3934/ipi.2018042

## Reconstruction of a compact manifold from the scattering data of internal sources

 1 Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland 2 Department of computational and applied mathematics, Rice University, Houston, Texas, USA 3 Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, UK 4 Department of Mathematics, University of California Santa Barbara, Santa Barbara, California, USA

Received  August 2017 Revised  March 2018 Published  June 2018

Given a smooth non-trapping compact manifold with strictly convex boundary, we consider an inverse problem of reconstructing the manifold from the scattering data initiated from internal sources. These data consist of the exit directions of geodesics that are emaneted from interior points of the manifold. We show that under certain generic assumption of the metric, the scattering data measured on the boundary determine the Riemannian manifold up to isometry.

Citation: Matti Lassas, Teemu Saksala, Hanming Zhou. Reconstruction of a compact manifold from the scattering data of internal sources. Inverse Problems & Imaging, 2018, 12 (4) : 993-1031. doi: 10.3934/ipi.2018042
##### References:

show all references

##### References:
Here is a schematic picture about our data $R_{\partial M}(p)$, where the point $p$ is the blue dot. Here the black arrows are the exit directions of geodesics emitted from $p$ and the blue arrows are our data
Here is a visualization of the set up in the definition of the function $\varrho_k$ in Lemma 2.8. The blue dot is $p$ and the red&blue dot is $q$. The black curve is the geodesic $\gamma_{p, \eta}$. The red line is the hypersurface $\tilde S_1$ and the blue line is the hypersurface $\tilde S_2$. The small blue and red segments indicate the intervals $(s_k-\delta, s_k+\delta)$ where the function $\varrho_k(\cdot, \eta)$ is defined
Here is a schematic picture about $K(p)$, where the point $p \in M$ is the blue dot. The black curves represent the geodesics $\gamma_{z, \xi}$, and $\gamma_{w, \eta}$ respectively, where vectors $(z, \xi), (w, \eta) \in R_{\partial M}^E(p)$. Notice that only $(w, \eta)\in K(p)$
Here is a schematic picture about the map $\Theta_{q, \tilde q, v}$ evaluated at point $p\in M$, where the point $p \in M$ is the blue dot and $V_q\cap V_{\tilde q}$ is the blue ellipse. The higher red&blue dot is $q$ and the lower is $\tilde q$. The blue vector is the given direction $v \in T_{\tilde q}N$
Here is a schematic picture about the situation where the boundary normal geodesic $\gamma_{p, \nu}$ (the black curve) is self-intersecting at $p \in \partial M$ (red&blue dot). Here the blue curve is the geodesic $\gamma_{p, W(p)}$, where $W(p)\notin I_p$. For the point $w \in M$ (blue dot) the point $p$ satisfies $p = \Pi_W(w)$
Here is a schematic picture about the map $(\tilde Q_{q, v}, \Pi^E_{q, W})$ evaluated at a point $x\in M$ that is close to $\partial M$, where the point $x \in M$ is the blue dot. The right hand side red&blue dot is $\Pi^E_{q, W}(x)$ and the left hand side red&blue dot is $q$. The blue arrow is the given vector $v \in T_qN$
 [1] Saikat Mazumdar. Struwe's decomposition for a polyharmonic operator on a compact Riemannian manifold with or without boundary. Communications on Pure & Applied Analysis, 2017, 16 (1) : 311-330. doi: 10.3934/cpaa.2017015 [2] Shengbing Deng, Zied Khemiri, Fethi Mahmoudi. On spike solutions for a singularly perturbed problem in a compact riemannian manifold. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2063-2084. doi: 10.3934/cpaa.2018098 [3] Sombuddha Bhattacharyya. An inverse problem for the magnetic Schrödinger operator on Riemannian manifolds from partial boundary data. Inverse Problems & Imaging, 2018, 12 (3) : 801-830. doi: 10.3934/ipi.2018034 [4] Alexander Nabutovsky and Regina Rotman. Lengths of geodesics between two points on a Riemannian manifold. Electronic Research Announcements, 2007, 13: 13-20. [5] Aylin Aydoğdu, Sean T. McQuade, Nastassia Pouradier Duteil. Opinion Dynamics on a General Compact Riemannian Manifold. Networks & Heterogeneous Media, 2017, 12 (3) : 489-523. doi: 10.3934/nhm.2017021 [6] Erwann Delay, Pieralberto Sicbaldi. Extremal domains for the first eigenvalue in a general compact Riemannian manifold. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5799-5825. doi: 10.3934/dcds.2015.35.5799 [7] Anna Maria Candela, J.L. Flores, M. Sánchez. A quadratic Bolza-type problem in a non-complete Riemannian manifold. Conference Publications, 2003, 2003 (Special) : 173-181. doi: 10.3934/proc.2003.2003.173 [8] Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203 [9] Guowei Dai, Ruyun Ma, Haiyan Wang, Feng Wang, Kuai Xu. Partial differential equations with Robin boundary condition in online social networks. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1609-1624. doi: 10.3934/dcdsb.2015.20.1609 [10] Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5337-5354. doi: 10.3934/dcdsb.2019061 [11] Yavar Kian, Morgan Morancey, Lauri Oksanen. Application of the boundary control method to partial data Borg-Levinson inverse spectral problem. Mathematical Control & Related Fields, 2019, 9 (2) : 289-312. doi: 10.3934/mcrf.2019015 [12] Xin Chen, Ana Bela Cruzeiro. Stochastic geodesics and forward-backward stochastic differential equations on Lie groups. Conference Publications, 2013, 2013 (special) : 115-121. doi: 10.3934/proc.2013.2013.115 [13] Angelo Favini, Rabah Labbas, Stéphane Maingot, Maëlis Meisner. Boundary value problem for elliptic differential equations in non-commutative cases. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4967-4990. doi: 10.3934/dcds.2013.33.4967 [14] Alfonso C. Casal, Jesús Ildefonso Díaz, José M. Vegas. Finite extinction time property for a delayed linear problem on a manifold without boundary. Conference Publications, 2011, 2011 (Special) : 265-271. doi: 10.3934/proc.2011.2011.265 [15] Tibor Krisztin. A local unstable manifold for differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 993-1028. doi: 10.3934/dcds.2003.9.993 [16] Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems & Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959 [17] Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems & Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169 [18] Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469 [19] Chuan-Fu Yang, Natalia Pavlovna Bondarenko. A partial inverse problem for the Sturm-Liouville operator on the lasso-graph. Inverse Problems & Imaging, 2019, 13 (1) : 69-79. doi: 10.3934/ipi.2019004 [20] Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481

2018 Impact Factor: 1.469