June  2018, 12(3): 667-676. doi: 10.3934/ipi.2018028

EIT in a layered anisotropic medium

1. 

Dipartimento di Matematica e Geoscienze, Università di Trieste, Via Valerio 12/1 -34127, Trieste, Italy

2. 

Departments of Computational and Applied Mathematics, Earth Science, Rice University, Houston, Texas, USA

3. 

Department of Mathematics and Statistics, Health Research Institute (HRI), University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland

Received  August 2017 Revised  December 2017 Published  March 2018

We consider the inverse problem in geophysics of imaging the subsurface of the Earth in cases where a region below the surface is known to be formed by strata of different materials and the depths and thicknesses of the strata and the (possibly anisotropic) conductivity of each of them need to be identified simultaneously. This problem is treated as a special case of the inverse problem of determining a family of nested inclusions in a medium $Ω\subset\mathbb{R}^n$, $n ≥ 3$.

Citation: Giovanni Alessandrini, Maarten V. de Hoop, Romina Gaburro, Eva Sincich. EIT in a layered anisotropic medium. Inverse Problems & Imaging, 2018, 12 (3) : 667-676. doi: 10.3934/ipi.2018028
References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Pure and Applied Mathematics (Amsterdam), 140, 2nd edition, Elsevier/Academic Press, Amsterdam, 2003. Google Scholar

[2]

G. Alessandrini, Singular solutions of elliptic equations and the determination of conductivity by boundary measurements, J. Differential Equations, 84 (1990), 252-272. doi: 10.1016/0022-0396(90)90078-4. Google Scholar

[3]

G. AlessandriniM. V. de Hoop and R. Gaburro, Uniqueness for the electrostatic inverse boundary value problem with piecewise constant anisotropic conductivities, Inverse Problems, 33 (2017), 125013. Google Scholar

[4]

G. Alessandrini and R. Gaburro, Determining conductivity with special anisotropy by boundary measurements, SIAM J. Math. Anal., 33 (2001), 153-171. doi: 10.1137/S0036141000369563. Google Scholar

[5]

G. Alessandrini and R. Gaburro, The local Calderón problem and the determination at the boundary of the conductivity, Comm. Partial Differential Equations, 34 (2009), 918-936. doi: 10.1080/03605300903017397. Google Scholar

[6]

K. AstalaM. Lassas and L. Päivärinta, Calderón inverse problem for anisotropic conductivity in the plane, Comm. Partial Differential Equations, 30 (2005), 207-224. doi: 10.1081/PDE-200044485. Google Scholar

[7]

M. I. Belishev, The Calderón problem for two-dimensional manifolds by the BC-Method, SIAM J. Math. Anal., 35 (2003), 172-182. doi: 10.1137/S0036141002413919. Google Scholar

[8]

E. Bierstone and P. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math., 67 (1988), 5-42. Google Scholar

[9]

A. P. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), 65–73, Soc. Brasil. Mat., Rio de Janeiro, 1980. Reprinted in: Comput. Appl. Math., 25 (2006), 133–138. Google Scholar

[10]

C. I. Cârstea, N. Honda and G. Nakamura, Uniqueness in the inverse boundary value problem for piecewise homogeneous anisotropic elasticity, preprint, arXiv: 1611.03930.Google Scholar

[11]

Ellis R. G. and D. W. Oldenburg, The pole-pole 3-D DC-resistivity inverse problem: A conjugate gradient approach, Geophysical Journal International, 119 (1994), 187-194. Google Scholar

[12]

C. G. Farquharson, Constructing piecewise-constant models in multidimensional minimum-structure inversions, Geophysics, 73 (2007), K1-K9. doi: 10.1190/1.2816650. Google Scholar

[13]

R. Gaburro and W. R. B. Lionheart, Recovering Riemannian metrics in monotone families from boundary data, Inverse Problems, 25 (2009), 045004, 14 pp. Google Scholar

[14]

R. Gaburro and E. Sincich, Lipschitz stability for the inverse conductivity problem for a conformal class of anisotropic conductivities, Inverse Problems, 31 (2015), 015008, 26pp. Google Scholar

[15]

L. A. Gallardo and M. A. Meju, Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints, Journal of Geophysical Research, 109 (2004), B03311. doi: 10.1029/2003JB002716. Google Scholar

[16]

T. GüntherC. Rücker and K. Spitzer, Three-dimensional modelling and inversion of dc resistivity data incorporating topography Ⅱ. Inversion, Geophysical Journal International, 166 (2006), 506-517. Google Scholar

[17]

E. Haber and D. Oldenburg, Joint inversion: A structural approach, Inverse Problems, 13 (1997), 63-77. doi: 10.1088/0266-5611/13/1/006. Google Scholar

[18]

M. Ikehata, Identification of the curve of discontinuity of the determinant of the anisotropic conductivity, J. Inverse Ill-Posed Probl., 8 (2000), 273-285. Google Scholar

[19]

R. Kohn and M. Vogelius, Identification of an unknown conductivity by means of measurements at the boundary, SIAM-AMS Proc., 14 (1984), 113-123. Google Scholar

[20]

M. Lassas and G. Uhlmann, On determining a Riemannian manifold from the Dirichlet-to-Neumann map, Ann. Sci. École Norm. Sup., 34 (2001), 771-787. doi: 10.1016/S0012-9593(01)01076-X. Google Scholar

[21]

M. LassasG. Uhlmann and M. Taylor, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Comm. Anal. Geom., 11 (2003), 207-221. doi: 10.4310/CAG.2003.v11.n2.a2. Google Scholar

[22]

J. M. Lee and G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math., 42 (1989), 1097-1112. doi: 10.1002/cpa.3160420804. Google Scholar

[23]

W. R. B. Lionheart, Conformal uniqueness results in anisotropic electrical impedance imaging, Inverse Problems, 13 (1997), 125-134. doi: 10.1088/0266-5611/13/1/010. Google Scholar

[24]

M. H. LokeI. Acworth and T. Dahlin, A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys, Exploration Geophysics, 34 (2003), 182-187. doi: 10.1071/EG03182. Google Scholar

[25]

A. Malinverno and C. Torres-Verdín, Bayesian inversion of DC electrical measurements with uncertainties for reservoir monitoring, Inverse Problems, 16 (2000), 1343-1356. doi: 10.1088/0266-5611/16/5/313. Google Scholar

[26]

A. Nachman, Global uniqueness for a two dimensional inverse boundary value problem, Ann. Math., 143 (1995), 71-96. doi: 10.2307/2118653. Google Scholar

[27]

A. Paré and Y. Li, Improved imaging of sharp boundaries in DC resistivity, SEG International Exposition and Annual Meeting (SEG-2017-17739005), (2017), 24-29. Google Scholar

[28]

J. Sylvester, An anisotropic inverse boundary value problem, Comm. Pure. Appl. Math., 43 (1990), 201-232. doi: 10.1002/cpa.3160430203. Google Scholar

[29]

G. Uhlmann, Electrical impedance tomography and Calder´on's problem (topical review), Inverse Problems, 25 (2009), 123011, 39pp. Google Scholar

[30]

J. ZhangR. L. Mackie and T. R. Madden, 3-D resistivity forward modeling and inversion using conjugate gradients, SEG Technical Program Expanded Abstracts, (1994), 377-380. doi: 10.1190/1.1932101. Google Scholar

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Pure and Applied Mathematics (Amsterdam), 140, 2nd edition, Elsevier/Academic Press, Amsterdam, 2003. Google Scholar

[2]

G. Alessandrini, Singular solutions of elliptic equations and the determination of conductivity by boundary measurements, J. Differential Equations, 84 (1990), 252-272. doi: 10.1016/0022-0396(90)90078-4. Google Scholar

[3]

G. AlessandriniM. V. de Hoop and R. Gaburro, Uniqueness for the electrostatic inverse boundary value problem with piecewise constant anisotropic conductivities, Inverse Problems, 33 (2017), 125013. Google Scholar

[4]

G. Alessandrini and R. Gaburro, Determining conductivity with special anisotropy by boundary measurements, SIAM J. Math. Anal., 33 (2001), 153-171. doi: 10.1137/S0036141000369563. Google Scholar

[5]

G. Alessandrini and R. Gaburro, The local Calderón problem and the determination at the boundary of the conductivity, Comm. Partial Differential Equations, 34 (2009), 918-936. doi: 10.1080/03605300903017397. Google Scholar

[6]

K. AstalaM. Lassas and L. Päivärinta, Calderón inverse problem for anisotropic conductivity in the plane, Comm. Partial Differential Equations, 30 (2005), 207-224. doi: 10.1081/PDE-200044485. Google Scholar

[7]

M. I. Belishev, The Calderón problem for two-dimensional manifolds by the BC-Method, SIAM J. Math. Anal., 35 (2003), 172-182. doi: 10.1137/S0036141002413919. Google Scholar

[8]

E. Bierstone and P. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math., 67 (1988), 5-42. Google Scholar

[9]

A. P. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), 65–73, Soc. Brasil. Mat., Rio de Janeiro, 1980. Reprinted in: Comput. Appl. Math., 25 (2006), 133–138. Google Scholar

[10]

C. I. Cârstea, N. Honda and G. Nakamura, Uniqueness in the inverse boundary value problem for piecewise homogeneous anisotropic elasticity, preprint, arXiv: 1611.03930.Google Scholar

[11]

Ellis R. G. and D. W. Oldenburg, The pole-pole 3-D DC-resistivity inverse problem: A conjugate gradient approach, Geophysical Journal International, 119 (1994), 187-194. Google Scholar

[12]

C. G. Farquharson, Constructing piecewise-constant models in multidimensional minimum-structure inversions, Geophysics, 73 (2007), K1-K9. doi: 10.1190/1.2816650. Google Scholar

[13]

R. Gaburro and W. R. B. Lionheart, Recovering Riemannian metrics in monotone families from boundary data, Inverse Problems, 25 (2009), 045004, 14 pp. Google Scholar

[14]

R. Gaburro and E. Sincich, Lipschitz stability for the inverse conductivity problem for a conformal class of anisotropic conductivities, Inverse Problems, 31 (2015), 015008, 26pp. Google Scholar

[15]

L. A. Gallardo and M. A. Meju, Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints, Journal of Geophysical Research, 109 (2004), B03311. doi: 10.1029/2003JB002716. Google Scholar

[16]

T. GüntherC. Rücker and K. Spitzer, Three-dimensional modelling and inversion of dc resistivity data incorporating topography Ⅱ. Inversion, Geophysical Journal International, 166 (2006), 506-517. Google Scholar

[17]

E. Haber and D. Oldenburg, Joint inversion: A structural approach, Inverse Problems, 13 (1997), 63-77. doi: 10.1088/0266-5611/13/1/006. Google Scholar

[18]

M. Ikehata, Identification of the curve of discontinuity of the determinant of the anisotropic conductivity, J. Inverse Ill-Posed Probl., 8 (2000), 273-285. Google Scholar

[19]

R. Kohn and M. Vogelius, Identification of an unknown conductivity by means of measurements at the boundary, SIAM-AMS Proc., 14 (1984), 113-123. Google Scholar

[20]

M. Lassas and G. Uhlmann, On determining a Riemannian manifold from the Dirichlet-to-Neumann map, Ann. Sci. École Norm. Sup., 34 (2001), 771-787. doi: 10.1016/S0012-9593(01)01076-X. Google Scholar

[21]

M. LassasG. Uhlmann and M. Taylor, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Comm. Anal. Geom., 11 (2003), 207-221. doi: 10.4310/CAG.2003.v11.n2.a2. Google Scholar

[22]

J. M. Lee and G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math., 42 (1989), 1097-1112. doi: 10.1002/cpa.3160420804. Google Scholar

[23]

W. R. B. Lionheart, Conformal uniqueness results in anisotropic electrical impedance imaging, Inverse Problems, 13 (1997), 125-134. doi: 10.1088/0266-5611/13/1/010. Google Scholar

[24]

M. H. LokeI. Acworth and T. Dahlin, A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys, Exploration Geophysics, 34 (2003), 182-187. doi: 10.1071/EG03182. Google Scholar

[25]

A. Malinverno and C. Torres-Verdín, Bayesian inversion of DC electrical measurements with uncertainties for reservoir monitoring, Inverse Problems, 16 (2000), 1343-1356. doi: 10.1088/0266-5611/16/5/313. Google Scholar

[26]

A. Nachman, Global uniqueness for a two dimensional inverse boundary value problem, Ann. Math., 143 (1995), 71-96. doi: 10.2307/2118653. Google Scholar

[27]

A. Paré and Y. Li, Improved imaging of sharp boundaries in DC resistivity, SEG International Exposition and Annual Meeting (SEG-2017-17739005), (2017), 24-29. Google Scholar

[28]

J. Sylvester, An anisotropic inverse boundary value problem, Comm. Pure. Appl. Math., 43 (1990), 201-232. doi: 10.1002/cpa.3160430203. Google Scholar

[29]

G. Uhlmann, Electrical impedance tomography and Calder´on's problem (topical review), Inverse Problems, 25 (2009), 123011, 39pp. Google Scholar

[30]

J. ZhangR. L. Mackie and T. R. Madden, 3-D resistivity forward modeling and inversion using conjugate gradients, SEG Technical Program Expanded Abstracts, (1994), 377-380. doi: 10.1190/1.1932101. Google Scholar

[1]

Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644

[2]

Matthias Eller. Stability of the anisotropic Maxwell equations with a conductivity term. Evolution Equations & Control Theory, 2019, 8 (2) : 343-357. doi: 10.3934/eect.2019018

[3]

Fioralba Cakoni, Houssem Haddar. A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Problems & Imaging, 2007, 1 (3) : 443-456. doi: 10.3934/ipi.2007.1.443

[4]

Armin Lechleiter, Marcel Rennoch. Non-linear Tikhonov regularization in Banach spaces for inverse scattering from anisotropic penetrable media. Inverse Problems & Imaging, 2017, 11 (1) : 151-176. doi: 10.3934/ipi.2017008

[5]

Matthew M. Dunlop, Andrew M. Stuart. The Bayesian formulation of EIT: Analysis and algorithms. Inverse Problems & Imaging, 2016, 10 (4) : 1007-1036. doi: 10.3934/ipi.2016030

[6]

Bruce Hughes. Geometric topology of stratified spaces. Electronic Research Announcements, 1996, 2: 73-81.

[7]

Alberto Bressan, Yunho Hong. Optimal control problems on stratified domains. Networks & Heterogeneous Media, 2007, 2 (2) : 313-331. doi: 10.3934/nhm.2007.2.313

[8]

Mathieu Desbrun, Evan S. Gawlik, François Gay-Balmaz, Vladimir Zeitlin. Variational discretization for rotating stratified fluids. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 477-509. doi: 10.3934/dcds.2014.34.477

[9]

Jutta Bikowski, Jennifer L. Mueller. 2D EIT reconstructions using Calderon's method. Inverse Problems & Imaging, 2008, 2 (1) : 43-61. doi: 10.3934/ipi.2008.2.43

[10]

Ville Kolehmainen, Matthias J. Ehrhardt, Simon R. Arridge. Incorporating structural prior information and sparsity into EIT using parallel level sets. Inverse Problems & Imaging, 2019, 13 (2) : 285-307. doi: 10.3934/ipi.2019015

[11]

Cristopher Hermosilla. Stratified discontinuous differential equations and sufficient conditions for robustness. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4415-4437. doi: 10.3934/dcds.2015.35.4415

[12]

David Colton, Yuk-J. Leung. On a transmission eigenvalue problem for a spherically stratified coated dielectric. Inverse Problems & Imaging, 2016, 10 (2) : 369-378. doi: 10.3934/ipi.2016004

[13]

David Henry, Bogdan--Vasile Matioc. On the regularity of steady periodic stratified water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1453-1464. doi: 10.3934/cpaa.2012.11.1453

[14]

Yao Xu, Weisheng Niu. Periodic homogenization of elliptic systems with stratified structure. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2295-2323. doi: 10.3934/dcds.2019097

[15]

Anna Geyer, Ronald Quirchmayr. Shallow water models for stratified equatorial flows. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4533-4545. doi: 10.3934/dcds.2019186

[16]

Miles H. Wheeler. On stratified water waves with critical layers and Coriolis forces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4747-4770. doi: 10.3934/dcds.2019193

[17]

D. Sanchez. Boundary layer on a high-conductivity domain. Communications on Pure & Applied Analysis, 2002, 1 (4) : 547-564. doi: 10.3934/cpaa.2002.1.547

[18]

Ville Kolehmainen, Matti Lassas, Petri Ola, Samuli Siltanen. Recovering boundary shape and conductivity in electrical impedance tomography. Inverse Problems & Imaging, 2013, 7 (1) : 217-242. doi: 10.3934/ipi.2013.7.217

[19]

M. Zuhair Nashed, Alexandru Tamasan. Structural stability in a minimization problem and applications to conductivity imaging. Inverse Problems & Imaging, 2011, 5 (1) : 219-236. doi: 10.3934/ipi.2011.5.219

[20]

Victor Isakov. On uniqueness in the inverse conductivity problem with local data. Inverse Problems & Imaging, 2007, 1 (1) : 95-105. doi: 10.3934/ipi.2007.1.95

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (64)
  • HTML views (170)
  • Cited by (0)

[Back to Top]