April  2018, 12(2): 349-371. doi: 10.3934/ipi.2018016

The factorization method for cracks in elastic scattering

1. 

South-Central University For Nationalities, Wuhan 430074, China

2. 

School of Mathematics and Statistics, Hubei Engineering University, Xiaogan 43200, China

3. 

Central China Normal University, Wuhan 430079, China

* Corresponding author: Guozheng Yan

Received  February 2017 Revised  November 2017 Published  February 2018

Fund Project: This research is supported by National Natural Science Foundation of People's Republic of China, No.11571132 and No.11601138

This paper is concerned with the scattering problems of a crack with Dirichlet or mixed impedance boundary conditions in two dimensional isotropic and linearized elasticity. The well posedness of the direct scattering problems for both situations are studied by the boundary integral equation method. The inverse scattering problems we are dealing with are the shape reconstruction of the crack from the knowledge of far field patterns due to the incident plane compressional and shear waves. We aim at extending the well known factorization method to crack determination in inverse elastic scattering, although it has been proved valid in acoustic and electromagnetic scattering, electrical impedance tomography and so on. The numerical examples are presented to illustrate the feasibility of this method.

Citation: Jun Guo, Qinghua Wu, Guozheng Yan. The factorization method for cracks in elastic scattering. Inverse Problems & Imaging, 2018, 12 (2) : 349-371. doi: 10.3934/ipi.2018016
References:
[1]

C. J. S. Alves and R. Kress, On the far-field operator in elastic obstacle scattering, IMA J. Appl. Math., 67 (2002), 1-21. doi: 10.1093/imamat/67.1.1. Google Scholar

[2]

T. Arens, Linear sampling methods for 2D inverse elastic wave scattering, Inverse Problems, 17 (2001), 1445-1464. doi: 10.1088/0266-5611/17/5/314. Google Scholar

[3]

A. Ben AbdaH. Ben Ameur and M. Jaoua, Identification of 2D cracks by elastic boundary measurements, Inverse problems, 15 (1999), 67-77. doi: 10.1088/0266-5611/15/1/011. Google Scholar

[4]

Y. Boukari and H. Haddar, The factorization method applied to cracks with impedance boundary conditions, Inverse Probl. Imaging, 7 (2013), 1123-1138. doi: 10.3934/ipi.2013.7.1123. Google Scholar

[5]

L. Bourgeois and E. Lunéville, On the use of the linear sampling method to identify cracks in elastic waveguides, Inverse Problems, 29 (2013), 0295017, 19pp. Google Scholar

[6]

F. Cakoni and D. Colton, The linear sampling method for cracks, Inverse Problems, 19 (2003), 279-295. doi: 10.1088/0266-5611/19/2/303. Google Scholar

[7]

F. Cakoni and D. Colton, Qualitative Method in Inverse Scattering Theory, Berlin: Springer, 2006. Google Scholar

[8]

R. ChapkoR. Kress and L. Mönch, On the numerical solution of a hypersingular integral equation for elastic scattering from a planar crack, IMA J. Numer. Anal., 20 (2000), 601-619. doi: 10.1093/imanum/20.4.601. Google Scholar

[9]

A. CharalambopoulosA. KirschK. A. AnagnostopoulosD. Gintides and K. Kiriaki, The factorization method in inverse elastic scattering from penetrable bodies, Inverse Problems, 23 (2007), 27-51. doi: 10.1088/0266-5611/23/1/002. Google Scholar

[10]

D. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory, 3rd ed, Springer Verlag: Berlin, 2013. Google Scholar

[11]

J. GuoJ. Hu and G. Yan, Application of the factorization method to retrieve a crack from near field data, J. Inverse Ill-posed Probl., 24 (2016), 527-541. doi: 10.1515/jiip-2014-0073. Google Scholar

[12]

T. Ha-Duong, On the boundary integral equations for the crack opening displacement of flat cracks, Integral Eq. Oper. Theory, 15 (1992), 427-453. doi: 10.1007/BF01200328. Google Scholar

[13]

G. Hu, A. Kirsch and M. Sini, Some inverse problems arising from elastic scattering by rigid obstacles, Inverse Problems, 29 (2013), 015009, 21pp. Google Scholar

[14]

M. Ikehata and H. Itou, Reconstruction of a linear crack in an isotropic elastic body from a single set of measured data, Inverse Problems, 23 (2007), 589-607. doi: 10.1088/0266-5611/23/2/008. Google Scholar

[15]

D. S. Jones, A uniqueness theorem in elastodynamics, Q. J. Mech. Appl. Math., 37 (1984), 121-142. doi: 10.1093/qjmam/37.1.121. Google Scholar

[16]

K. Kiriaki and V. Sevroglou, Integral equations methods in obstacle elastic scattering, Bull. Greek Math. Soc., 45 (2001), 57-69. Google Scholar

[17]

A. Kirsch and S. Ritter, A linear sampling method for inverse scattering from an open arc, Inverse Problems, 16 (2000), 89-105. doi: 10.1088/0266-5611/16/1/308. Google Scholar

[18]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford University Press, 2008. Google Scholar

[19]

A. Kirsch, The factorization method for a class of inverse elliptic problems, Math. Nachr., 278 (2005), 258-277. doi: 10.1002/mana.200310239. Google Scholar

[20]

A. Kirsch, Properties of far field operators in acoustic scattering, Math. Meth. Appl. Sci., 11 (1989), 773-787. doi: 10.1002/mma.1670110604. Google Scholar

[21]

R. Kress, Inverse elastic scattering from a crack, Inverse Problems, 12 (1996), 667-684. doi: 10.1088/0266-5611/12/5/010. Google Scholar

[22]

R. Kress, On the numerical solution of a hypersingular integral equation in scattering thoery, J. Comp. Appl. Math., 61 (1995), 345-360. doi: 10.1016/0377-0427(94)00073-7. Google Scholar

[23]

R. Kress, Linear Integral Equations, Springer: Berlin, 1989. Google Scholar

[24]

V. D. Kupradze, Potential Methods in the Theory of Elasticity, Israel Program for Scientific Translations, Jerusalem, 1965. Google Scholar

[25]

M. Mclean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000. Google Scholar

[26]

P. M. Morse and H. Feshbach, Methods of Theoretical Physics vols I, II, New York: McGraw-Hill, 1953. Google Scholar

[27]

G. NakamuraG. Uhlmann and J. N. Wang, Reconstruction of cracks in an inhomogeneous anisotropic elastic medium, J. Math. Pures Appl., 82 (2003), 1251-1276. doi: 10.1016/S0021-7824(03)00072-2. Google Scholar

[28]

E. P. Stephan, Boundary Integral Equations for crack Problems in $\mathbb{R}^3$, Integral Eq. Oper. Theory, 10 (1987), 236-257. doi: 10.1007/BF01199079. Google Scholar

[29]

K. Tanuma, Stroh formalism and Rayleigh waves, J. Elasticity, 89 (2007), ⅵ+159 pp. Google Scholar

show all references

References:
[1]

C. J. S. Alves and R. Kress, On the far-field operator in elastic obstacle scattering, IMA J. Appl. Math., 67 (2002), 1-21. doi: 10.1093/imamat/67.1.1. Google Scholar

[2]

T. Arens, Linear sampling methods for 2D inverse elastic wave scattering, Inverse Problems, 17 (2001), 1445-1464. doi: 10.1088/0266-5611/17/5/314. Google Scholar

[3]

A. Ben AbdaH. Ben Ameur and M. Jaoua, Identification of 2D cracks by elastic boundary measurements, Inverse problems, 15 (1999), 67-77. doi: 10.1088/0266-5611/15/1/011. Google Scholar

[4]

Y. Boukari and H. Haddar, The factorization method applied to cracks with impedance boundary conditions, Inverse Probl. Imaging, 7 (2013), 1123-1138. doi: 10.3934/ipi.2013.7.1123. Google Scholar

[5]

L. Bourgeois and E. Lunéville, On the use of the linear sampling method to identify cracks in elastic waveguides, Inverse Problems, 29 (2013), 0295017, 19pp. Google Scholar

[6]

F. Cakoni and D. Colton, The linear sampling method for cracks, Inverse Problems, 19 (2003), 279-295. doi: 10.1088/0266-5611/19/2/303. Google Scholar

[7]

F. Cakoni and D. Colton, Qualitative Method in Inverse Scattering Theory, Berlin: Springer, 2006. Google Scholar

[8]

R. ChapkoR. Kress and L. Mönch, On the numerical solution of a hypersingular integral equation for elastic scattering from a planar crack, IMA J. Numer. Anal., 20 (2000), 601-619. doi: 10.1093/imanum/20.4.601. Google Scholar

[9]

A. CharalambopoulosA. KirschK. A. AnagnostopoulosD. Gintides and K. Kiriaki, The factorization method in inverse elastic scattering from penetrable bodies, Inverse Problems, 23 (2007), 27-51. doi: 10.1088/0266-5611/23/1/002. Google Scholar

[10]

D. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory, 3rd ed, Springer Verlag: Berlin, 2013. Google Scholar

[11]

J. GuoJ. Hu and G. Yan, Application of the factorization method to retrieve a crack from near field data, J. Inverse Ill-posed Probl., 24 (2016), 527-541. doi: 10.1515/jiip-2014-0073. Google Scholar

[12]

T. Ha-Duong, On the boundary integral equations for the crack opening displacement of flat cracks, Integral Eq. Oper. Theory, 15 (1992), 427-453. doi: 10.1007/BF01200328. Google Scholar

[13]

G. Hu, A. Kirsch and M. Sini, Some inverse problems arising from elastic scattering by rigid obstacles, Inverse Problems, 29 (2013), 015009, 21pp. Google Scholar

[14]

M. Ikehata and H. Itou, Reconstruction of a linear crack in an isotropic elastic body from a single set of measured data, Inverse Problems, 23 (2007), 589-607. doi: 10.1088/0266-5611/23/2/008. Google Scholar

[15]

D. S. Jones, A uniqueness theorem in elastodynamics, Q. J. Mech. Appl. Math., 37 (1984), 121-142. doi: 10.1093/qjmam/37.1.121. Google Scholar

[16]

K. Kiriaki and V. Sevroglou, Integral equations methods in obstacle elastic scattering, Bull. Greek Math. Soc., 45 (2001), 57-69. Google Scholar

[17]

A. Kirsch and S. Ritter, A linear sampling method for inverse scattering from an open arc, Inverse Problems, 16 (2000), 89-105. doi: 10.1088/0266-5611/16/1/308. Google Scholar

[18]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford University Press, 2008. Google Scholar

[19]

A. Kirsch, The factorization method for a class of inverse elliptic problems, Math. Nachr., 278 (2005), 258-277. doi: 10.1002/mana.200310239. Google Scholar

[20]

A. Kirsch, Properties of far field operators in acoustic scattering, Math. Meth. Appl. Sci., 11 (1989), 773-787. doi: 10.1002/mma.1670110604. Google Scholar

[21]

R. Kress, Inverse elastic scattering from a crack, Inverse Problems, 12 (1996), 667-684. doi: 10.1088/0266-5611/12/5/010. Google Scholar

[22]

R. Kress, On the numerical solution of a hypersingular integral equation in scattering thoery, J. Comp. Appl. Math., 61 (1995), 345-360. doi: 10.1016/0377-0427(94)00073-7. Google Scholar

[23]

R. Kress, Linear Integral Equations, Springer: Berlin, 1989. Google Scholar

[24]

V. D. Kupradze, Potential Methods in the Theory of Elasticity, Israel Program for Scientific Translations, Jerusalem, 1965. Google Scholar

[25]

M. Mclean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000. Google Scholar

[26]

P. M. Morse and H. Feshbach, Methods of Theoretical Physics vols I, II, New York: McGraw-Hill, 1953. Google Scholar

[27]

G. NakamuraG. Uhlmann and J. N. Wang, Reconstruction of cracks in an inhomogeneous anisotropic elastic medium, J. Math. Pures Appl., 82 (2003), 1251-1276. doi: 10.1016/S0021-7824(03)00072-2. Google Scholar

[28]

E. P. Stephan, Boundary Integral Equations for crack Problems in $\mathbb{R}^3$, Integral Eq. Oper. Theory, 10 (1987), 236-257. doi: 10.1007/BF01199079. Google Scholar

[29]

K. Tanuma, Stroh formalism and Rayleigh waves, J. Elasticity, 89 (2007), ⅵ+159 pp. Google Scholar

Figure 2.  Inversion example for DIP: reconstruction of the semi-circle (52) for $\mu = 2$, $\lambda = 1, \mathbf{p} = [1/2, \sqrt{3}/2]^\top$, noise level = $5\%$ with different $\omega$.
Figure 4.  Inversion example for DIP: reconstruction of the line (53) for $\omega = 4$, $\mu = 1$, $\lambda = 2$, $\mathbf{p} = [-1/2, \sqrt{3}/2]^\top$ with different noise levels.
Figure 6.  Inversion example for DIP: reconstruction of the curve (54) for $\omega = 4$, $\mu = 1$, $\lambda = 2$, noise level = $1\%$ with different polarization directions $\mathbf{p}$.
Figure 3.  Inversion example for MIP: reconstruction of the semi-circle (52) for $\mu=1$, $\lambda=2$, $\eta=2$, $\mathbf{p}=[0,1]^\top$, noise level=$1\%$ with different $\omega$.
Figure 5.  Inversion example for MIP: reconstruction of the line (53) for $\omega = 5$, $\mu = 1$, $\lambda = 3$, $\eta = 1$, $\mathbf{p} = [\sqrt{3}/2, 1/2]^\top$ with different noise levels.
Figure 7.  Inversion example for MIP: reconstruction of the curve (54) for $\omega = 5$, $\mu = 1$, $\lambda = 2$, $\eta = 1$, noise level = $1\%$ with different polarization directions $\mathbf{p}$.
Figure 1.  The exact objects: the shape of (52) (left), the shape of (53) (middle) and the shape of (54) (right)
[1]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems & Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[2]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[3]

Guanghui Hu, Andreas Kirsch, Tao Yin. Factorization method in inverse interaction problems with bi-periodic interfaces between acoustic and elastic waves. Inverse Problems & Imaging, 2016, 10 (1) : 103-129. doi: 10.3934/ipi.2016.10.103

[4]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[5]

Armin Lechleiter. The factorization method is independent of transmission eigenvalues. Inverse Problems & Imaging, 2009, 3 (1) : 123-138. doi: 10.3934/ipi.2009.3.123

[6]

Yosra Boukari, Houssem Haddar. The factorization method applied to cracks with impedance boundary conditions. Inverse Problems & Imaging, 2013, 7 (4) : 1123-1138. doi: 10.3934/ipi.2013.7.1123

[7]

Xiaodong Liu. The factorization method for scatterers with different physical properties. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 563-577. doi: 10.3934/dcdss.2015.8.563

[8]

Peijun Li, Xiaokai Yuan. Inverse obstacle scattering for elastic waves in three dimensions. Inverse Problems & Imaging, 2019, 13 (3) : 545-573. doi: 10.3934/ipi.2019026

[9]

Dinh-Liem Nguyen. The factorization method for the Drude-Born-Fedorov model for periodic chiral structures. Inverse Problems & Imaging, 2016, 10 (2) : 519-547. doi: 10.3934/ipi.2016010

[10]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems & Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[11]

Johannes Elschner, Guanghui Hu, Masahiro Yamamoto. Uniqueness in inverse elastic scattering from unbounded rigid surfaces of rectangular type. Inverse Problems & Imaging, 2015, 9 (1) : 127-141. doi: 10.3934/ipi.2015.9.127

[12]

Huai-An Diao, Peijun Li, Xiaokai Yuan. Inverse elastic surface scattering with far-field data. Inverse Problems & Imaging, 2019, 13 (4) : 721-744. doi: 10.3934/ipi.2019033

[13]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[14]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[15]

Nuutti Hyvönen, Harri Hakula, Sampsa Pursiainen. Numerical implementation of the factorization method within the complete electrode model of electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (2) : 299-317. doi: 10.3934/ipi.2007.1.299

[16]

Junjiang Lai, Jianguo Huang. A finite element method for vibration analysis of elastic plate-plate structures. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 387-419. doi: 10.3934/dcdsb.2009.11.387

[17]

Ming Chen, Chongchao Huang. A power penalty method for the general traffic assignment problem with elastic demand. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1019-1030. doi: 10.3934/jimo.2014.10.1019

[18]

Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems & Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757

[19]

Beatrice Bugert, Gunther Schmidt. Analytical investigation of an integral equation method for electromagnetic scattering by biperiodic structures. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 435-473. doi: 10.3934/dcdss.2015.8.435

[20]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (48)
  • HTML views (178)
  • Cited by (0)

Other articles
by authors

[Back to Top]