April  2017, 11(2): 339-353. doi: 10.3934/ipi.2017016

Stability in conductivity imaging from partial measurements of one interior current

1. 

Deparment of Mathematics, University of Washingotn, Seattle, WA 98195-4350, USA

2. 

Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA

* Corresponding author: Carlos Montalto

Received  April 2016 Revised  July 2016 Published  March 2017

Fund Project: A. Tamasan was supported by the NSF Grant DMS 1312883

We prove a stability result in the hybrid inverse problem of recovering the electrical conductivity from partial knowledge of one current density field generated inside a body by an imposed boundary voltage. The region of stable reconstruction is well defined by a combination of the exact and perturbed data. This work explains the high resolution and accuracy reconstructions in some existing numerical experiments that use partial interior data.

Citation: Carlos Montalto, Alexandru Tamasan. Stability in conductivity imaging from partial measurements of one interior current. Inverse Problems & Imaging, 2017, 11 (2) : 339-353. doi: 10.3934/ipi.2017016
References:
[1]

G. Alessandrini, Critical points of solutions of elliptic equations in two variables, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 14 (1987), 229-256. Google Scholar

[2]

G. Alessandrini, Global stability for a coupled physics inverse problem, Inverse Problems, 30 (2014), 075008, 10pp. doi: 10.1088/0266-5611/30/7/075008. Google Scholar

[3]

G. Bal, Hybrid inverse problems and internal functionals, Inverse problems and applications: Inside out. II, 325-368, Math. Sci. Res. Inst. Publ., 60, Cambridge Univ. Press, Cambridge, 2013 Google Scholar

[4]

G. Bal, Hybrid inverse problems and redundant systems of partial differential equations, Inverse Problems and Applications, 15-47, Contemp. Math., 615, Amer. Math. Soc., Providence, RI, 2014. doi: 10.1090/conm/615/12289. Google Scholar

[5]

G. BalE. BonnetierF. Monard and F. Triki, Inverse diffusion from knowledge of power densities, Inverse Problems and Imaging, 7 (2013), 353-375. doi: 10.3934/ipi.2013.7.353. Google Scholar

[6]

G. Bal, C. Guo and F. Monard, Inverse anisotropic conductivity from internal current densities Inverse Problems, 30 (2014), 025001, 21pp. doi: 10.1088/0266-5611/30/2/025001. Google Scholar

[7]

Y. CapdeboscqJ. FehrenbachF. De Gournay and O. Kavian, Imaging by modification: numerical reconstruction of local conductivities from corresponding power density measurements, SIAM Journal on Imaging Sciences, 2 (2009), 1003-1030. doi: 10.1137/080723521. Google Scholar

[8]

B. Gebauer and O. Scherzer, Impedance-acoustic tomography, SIAM J. Appl. Math., 69 (2008), 565-576. doi: 10.1137/080715123. Google Scholar

[9]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2001. Google Scholar

[10]

K. Hasanov, A. Ma, R. Yoon, A. Nachman and M. Joy, A new approach to current density impedance imaging, Engineering in Medicine and Biology Society, IEMBS '04. 26th Annual International Conference of the IEEE, 1 (2004), 1321-1324. doi: 10.1109/IEMBS.2004.1403415. Google Scholar

[11]

N. Honda, J. McLaughlin and G. Nakamura, Conditional stability for single interior measurement Inverse Problems, 30 (2014), 055001, 19pp. doi: 10.1088/0266-5611/30/5/055001. Google Scholar

[12]

S. KimO. KwonJ. K. Seo and J.-R. Yoon, On a nonlinear partial differential equation arising in magnetic resonance electrical impedance tomography, SIAM journal on Mathematical Analysis, 34 (2002), 511-526. doi: 10.1137/S0036141001391354. Google Scholar

[13]

Y. -J. Kim and M. -G. Lee, Well-posedness of the conductivity reconstruction from an interior current density in terms of Schauder theory, Quart. Appl. Math., 73 (2015), 419-433. doi: 10.1090/qam/1368. Google Scholar

[14]

Kuchment and D. Steinhauer, Stabilizing inverse problems by internal data Inverse Problems, 28 (2012), 084007, 20pp. doi: 10.1088/0266-5611/28/8/084007. Google Scholar

[15]

Kuchment and D. Steinhauer, Stabilizing inverse problems by internal data. Ⅱ: Non-local internal data and generic linearized uniqueness, Anal. Math. Phys., 5 (2015), 391-425. doi: 10.1007/s13324-015-0104-6. Google Scholar

[16]

O. KwonJ.-Y. Lee and J.-R. Yoon, Equipotential line method for magnetic resonance electrical impedance tomography, Inverse Problems, 18 (2002), 1089-1100. doi: 10.1088/0266-5611/18/4/310. Google Scholar

[17]

J.-Y. Lee, A reconstruction formula and uniqueness of conductivity in MREIT using two internal current distributions, Inverse Problems, 20 (2004), 847-858. doi: 10.1088/0266-5611/20/3/012. Google Scholar

[18]

F. Monard and G. Bal, Inverse anisotropic diffusion from power density measurements in two dimensions Inverse Problems, 28 (2012), 084001, 20pp. doi: 10.1088/0266-5611/28/8/084001. Google Scholar

[19]

F. Monard and G. Bal, Inverse anisotropic conductivity from power densities in dimension $n≥q3$, Comm. Partial Differential Equations, 38 (2013), 1183-1207. doi: 10.1080/03605302.2013.787089. Google Scholar

[20]

C. Montalto and Stefanov, Stability of coupled-physics inverse problems with one internal measurement Inverse Problems, 29 (2013), 125004, 13pp. doi: 10.1088/0266-5611/29/12/125004. Google Scholar

[21]

A. Moradifam, A. Nachman and A. Tamasan, Uniqueness of minimizers of weighted least gradient problems arising in conductivity imaging, preprint, 2014.Google Scholar

[22]

A. NachmanA. Tamasan and A. Timonov, Conductivity imaging with a single measurement of boundary and interior data, Inverse Problems, 23 (2007), 2551-2563. doi: 10.1088/0266-5611/23/6/017. Google Scholar

[23]

A. Nachman, A. Tamasan and A. Timonov, Recovering the conductivity from a single measurement of interior data Inverse Problems 25 (2009), 035014, 16pp. doi: 10.1088/0266-5611/25/3/035014. Google Scholar

[24]

A. NachmanA. Tamasan and A. Timonov, Reconstruction of planar conductivities in subdomains from incomplete data, SIAM J. Appl. Math., 70 (2010), 3342-3362. doi: 10.1137/10079241X. Google Scholar

[25]

A. Nachman, A. Tamasan and A. Timonov, Current density impedance imaging, Tomography and inverse transport theory, vol. 559 of Contem Math., Amer. Math. Soc., Providence, RI, 2011,135-149. doi: 10.1090/conm/559/11076. Google Scholar

[26]

M. Z. Nashed and A. Tamasan, Structural stability in a minimizationproblem and applications to conductivity imaging, Inverse Probl. Imaging, 5 (2011), 219-236. doi: 10.3934/ipi.2011.5.219. Google Scholar

[27]

G. C. ScottM. L. G. JoyR. L. Armstrong and R. M. Henkelman, Measurement of nonuniform current density by magnetic resonance, IEEE Transactions on Medical Imaging, 10 (1991), 362-374. doi: 10.1109/42.97586. Google Scholar

[28]

J. K. Seo and E. J. Woo, Magnetic resonance electrical impedance tomography (MREIT), SIAM Rev., 53 (2011), 40-68. doi: 10.1137/080742932. Google Scholar

[29]

A. Tamasan and A. Timonov, Coupled physics electrical conductivity imaging, Eurasian J. Math. Com Appl., 2 (2014), 5-29. Google Scholar

[30]

A. TamasanA. Timonov and J. Veras, Stable reconstruction of regular 1-harmonic maps with a given trace at the boundary, Appl. Anal, 94 (2015), 1098-1115. doi: 10.1080/00036811.2014.918260. Google Scholar

[31]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Johann Ambrosius Barth, Heidelberg, 2nd ed., 1995. Google Scholar

[32]

T. Widlak and O. Scherzer, Hybrid tomography for conductivity imaging Inverse Problems, 28 (2012), 084008, 28pp. doi: 10.1088/0266-5611/28/8/084008. Google Scholar

[33]

N. Zhang, Electrical impedance tomography based on current density imaging, MSc. thesis, University of Toronto, 1992.Google Scholar

show all references

References:
[1]

G. Alessandrini, Critical points of solutions of elliptic equations in two variables, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 14 (1987), 229-256. Google Scholar

[2]

G. Alessandrini, Global stability for a coupled physics inverse problem, Inverse Problems, 30 (2014), 075008, 10pp. doi: 10.1088/0266-5611/30/7/075008. Google Scholar

[3]

G. Bal, Hybrid inverse problems and internal functionals, Inverse problems and applications: Inside out. II, 325-368, Math. Sci. Res. Inst. Publ., 60, Cambridge Univ. Press, Cambridge, 2013 Google Scholar

[4]

G. Bal, Hybrid inverse problems and redundant systems of partial differential equations, Inverse Problems and Applications, 15-47, Contemp. Math., 615, Amer. Math. Soc., Providence, RI, 2014. doi: 10.1090/conm/615/12289. Google Scholar

[5]

G. BalE. BonnetierF. Monard and F. Triki, Inverse diffusion from knowledge of power densities, Inverse Problems and Imaging, 7 (2013), 353-375. doi: 10.3934/ipi.2013.7.353. Google Scholar

[6]

G. Bal, C. Guo and F. Monard, Inverse anisotropic conductivity from internal current densities Inverse Problems, 30 (2014), 025001, 21pp. doi: 10.1088/0266-5611/30/2/025001. Google Scholar

[7]

Y. CapdeboscqJ. FehrenbachF. De Gournay and O. Kavian, Imaging by modification: numerical reconstruction of local conductivities from corresponding power density measurements, SIAM Journal on Imaging Sciences, 2 (2009), 1003-1030. doi: 10.1137/080723521. Google Scholar

[8]

B. Gebauer and O. Scherzer, Impedance-acoustic tomography, SIAM J. Appl. Math., 69 (2008), 565-576. doi: 10.1137/080715123. Google Scholar

[9]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2001. Google Scholar

[10]

K. Hasanov, A. Ma, R. Yoon, A. Nachman and M. Joy, A new approach to current density impedance imaging, Engineering in Medicine and Biology Society, IEMBS '04. 26th Annual International Conference of the IEEE, 1 (2004), 1321-1324. doi: 10.1109/IEMBS.2004.1403415. Google Scholar

[11]

N. Honda, J. McLaughlin and G. Nakamura, Conditional stability for single interior measurement Inverse Problems, 30 (2014), 055001, 19pp. doi: 10.1088/0266-5611/30/5/055001. Google Scholar

[12]

S. KimO. KwonJ. K. Seo and J.-R. Yoon, On a nonlinear partial differential equation arising in magnetic resonance electrical impedance tomography, SIAM journal on Mathematical Analysis, 34 (2002), 511-526. doi: 10.1137/S0036141001391354. Google Scholar

[13]

Y. -J. Kim and M. -G. Lee, Well-posedness of the conductivity reconstruction from an interior current density in terms of Schauder theory, Quart. Appl. Math., 73 (2015), 419-433. doi: 10.1090/qam/1368. Google Scholar

[14]

Kuchment and D. Steinhauer, Stabilizing inverse problems by internal data Inverse Problems, 28 (2012), 084007, 20pp. doi: 10.1088/0266-5611/28/8/084007. Google Scholar

[15]

Kuchment and D. Steinhauer, Stabilizing inverse problems by internal data. Ⅱ: Non-local internal data and generic linearized uniqueness, Anal. Math. Phys., 5 (2015), 391-425. doi: 10.1007/s13324-015-0104-6. Google Scholar

[16]

O. KwonJ.-Y. Lee and J.-R. Yoon, Equipotential line method for magnetic resonance electrical impedance tomography, Inverse Problems, 18 (2002), 1089-1100. doi: 10.1088/0266-5611/18/4/310. Google Scholar

[17]

J.-Y. Lee, A reconstruction formula and uniqueness of conductivity in MREIT using two internal current distributions, Inverse Problems, 20 (2004), 847-858. doi: 10.1088/0266-5611/20/3/012. Google Scholar

[18]

F. Monard and G. Bal, Inverse anisotropic diffusion from power density measurements in two dimensions Inverse Problems, 28 (2012), 084001, 20pp. doi: 10.1088/0266-5611/28/8/084001. Google Scholar

[19]

F. Monard and G. Bal, Inverse anisotropic conductivity from power densities in dimension $n≥q3$, Comm. Partial Differential Equations, 38 (2013), 1183-1207. doi: 10.1080/03605302.2013.787089. Google Scholar

[20]

C. Montalto and Stefanov, Stability of coupled-physics inverse problems with one internal measurement Inverse Problems, 29 (2013), 125004, 13pp. doi: 10.1088/0266-5611/29/12/125004. Google Scholar

[21]

A. Moradifam, A. Nachman and A. Tamasan, Uniqueness of minimizers of weighted least gradient problems arising in conductivity imaging, preprint, 2014.Google Scholar

[22]

A. NachmanA. Tamasan and A. Timonov, Conductivity imaging with a single measurement of boundary and interior data, Inverse Problems, 23 (2007), 2551-2563. doi: 10.1088/0266-5611/23/6/017. Google Scholar

[23]

A. Nachman, A. Tamasan and A. Timonov, Recovering the conductivity from a single measurement of interior data Inverse Problems 25 (2009), 035014, 16pp. doi: 10.1088/0266-5611/25/3/035014. Google Scholar

[24]

A. NachmanA. Tamasan and A. Timonov, Reconstruction of planar conductivities in subdomains from incomplete data, SIAM J. Appl. Math., 70 (2010), 3342-3362. doi: 10.1137/10079241X. Google Scholar

[25]

A. Nachman, A. Tamasan and A. Timonov, Current density impedance imaging, Tomography and inverse transport theory, vol. 559 of Contem Math., Amer. Math. Soc., Providence, RI, 2011,135-149. doi: 10.1090/conm/559/11076. Google Scholar

[26]

M. Z. Nashed and A. Tamasan, Structural stability in a minimizationproblem and applications to conductivity imaging, Inverse Probl. Imaging, 5 (2011), 219-236. doi: 10.3934/ipi.2011.5.219. Google Scholar

[27]

G. C. ScottM. L. G. JoyR. L. Armstrong and R. M. Henkelman, Measurement of nonuniform current density by magnetic resonance, IEEE Transactions on Medical Imaging, 10 (1991), 362-374. doi: 10.1109/42.97586. Google Scholar

[28]

J. K. Seo and E. J. Woo, Magnetic resonance electrical impedance tomography (MREIT), SIAM Rev., 53 (2011), 40-68. doi: 10.1137/080742932. Google Scholar

[29]

A. Tamasan and A. Timonov, Coupled physics electrical conductivity imaging, Eurasian J. Math. Com Appl., 2 (2014), 5-29. Google Scholar

[30]

A. TamasanA. Timonov and J. Veras, Stable reconstruction of regular 1-harmonic maps with a given trace at the boundary, Appl. Anal, 94 (2015), 1098-1115. doi: 10.1080/00036811.2014.918260. Google Scholar

[31]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Johann Ambrosius Barth, Heidelberg, 2nd ed., 1995. Google Scholar

[32]

T. Widlak and O. Scherzer, Hybrid tomography for conductivity imaging Inverse Problems, 28 (2012), 084008, 28pp. doi: 10.1088/0266-5611/28/8/084008. Google Scholar

[33]

N. Zhang, Electrical impedance tomography based on current density imaging, MSc. thesis, University of Toronto, 1992.Google Scholar

Figure 2.  The injectivity region $\mathcal{I}(\Gamma,u)$ is the light grey region that contains the stability region $\mathcal{S}(\Gamma,u)$ in dark grey.
Figure 1.  Illustration of the segment $l_p$ and the surface $\Sigma_p$.
Figure 3.  When $\Gamma$ is connected the visible region and the trajectory region can be the same.
Figure 4.  We illustrate how we can controlled the visible region and the projection of the current density. The underlying idea is to chose voltages potential $f$ at the boundary to induced specific level curves $u_0 =$const. By doing so, we get a better understanding of the required direction of the current density to obtain an stable reconstruction. Here, $\delta \bf{J}_0$ denote $\bf{J}(\sigma) - \bf{J}(\sigma_0)$ and ${{\bf{w}}_{0}} = \Pi_{\nabla (u_0)}(\delta \bf{J}_0) $.
[1]

Hiroshi Isozaki. Inverse boundary value problems in the horosphere - A link between hyperbolic geometry and electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (1) : 107-134. doi: 10.3934/ipi.2007.1.107

[2]

Bastian Gebauer. Localized potentials in electrical impedance tomography. Inverse Problems & Imaging, 2008, 2 (2) : 251-269. doi: 10.3934/ipi.2008.2.251

[3]

Fabrice Delbary, Rainer Kress. Electrical impedance tomography using a point electrode inverse scheme for complete electrode data. Inverse Problems & Imaging, 2011, 5 (2) : 355-369. doi: 10.3934/ipi.2011.5.355

[4]

Bernd Kawohl, Friedemann Schuricht. First eigenfunctions of the 1-Laplacian are viscosity solutions. Communications on Pure & Applied Analysis, 2015, 14 (1) : 329-339. doi: 10.3934/cpaa.2015.14.329

[5]

Kari Astala, Jennifer L. Mueller, Lassi Päivärinta, Allan Perämäki, Samuli Siltanen. Direct electrical impedance tomography for nonsmooth conductivities. Inverse Problems & Imaging, 2011, 5 (3) : 531-549. doi: 10.3934/ipi.2011.5.531

[6]

Ville Kolehmainen, Matti Lassas, Petri Ola, Samuli Siltanen. Recovering boundary shape and conductivity in electrical impedance tomography. Inverse Problems & Imaging, 2013, 7 (1) : 217-242. doi: 10.3934/ipi.2013.7.217

[7]

Simon Hubmer, Andreas Neubauer, Ronny Ramlau, Henning U. Voss. On the parameter estimation problem of magnetic resonance advection imaging. Inverse Problems & Imaging, 2018, 12 (1) : 175-204. doi: 10.3934/ipi.2018007

[8]

Liliana Borcea, Fernando Guevara Vasquez, Alexander V. Mamonov. Study of noise effects in electrical impedance tomography with resistor networks. Inverse Problems & Imaging, 2013, 7 (2) : 417-443. doi: 10.3934/ipi.2013.7.417

[9]

Dong liu, Ville Kolehmainen, Samuli Siltanen, Anne-maria Laukkanen, Aku Seppänen. Estimation of conductivity changes in a region of interest with electrical impedance tomography. Inverse Problems & Imaging, 2015, 9 (1) : 211-229. doi: 10.3934/ipi.2015.9.211

[10]

Gen Nakamura, Päivi Ronkanen, Samuli Siltanen, Kazumi Tanuma. Recovering conductivity at the boundary in three-dimensional electrical impedance tomography. Inverse Problems & Imaging, 2011, 5 (2) : 485-510. doi: 10.3934/ipi.2011.5.485

[11]

Nicolay M. Tanushev, Luminita Vese. A piecewise-constant binary model for electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (2) : 423-435. doi: 10.3934/ipi.2007.1.423

[12]

Nuutti Hyvönen, Lassi Päivärinta, Janne P. Tamminen. Enhancing D-bar reconstructions for electrical impedance tomography with conformal maps. Inverse Problems & Imaging, 2018, 12 (2) : 373-400. doi: 10.3934/ipi.2018017

[13]

Kimmo Karhunen, Aku Seppänen, Jari P. Kaipio. Adaptive meshing approach to identification of cracks with electrical impedance tomography. Inverse Problems & Imaging, 2014, 8 (1) : 127-148. doi: 10.3934/ipi.2014.8.127

[14]

Jérémi Dardé, Harri Hakula, Nuutti Hyvönen, Stratos Staboulis. Fine-tuning electrode information in electrical impedance tomography. Inverse Problems & Imaging, 2012, 6 (3) : 399-421. doi: 10.3934/ipi.2012.6.399

[15]

Bernard Bonnard, Olivier Cots, Jérémy Rouot, Thibaut Verron. Time minimal saturation of a pair of spins and application in Magnetic Resonance Imaging. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019029

[16]

Melody Dodd, Jennifer L. Mueller. A real-time D-bar algorithm for 2-D electrical impedance tomography data. Inverse Problems & Imaging, 2014, 8 (4) : 1013-1031. doi: 10.3934/ipi.2014.8.1013

[17]

Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, Jari P. Kaipio, Erkki Somersalo. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Stochastic extension of the boundary map. Inverse Problems & Imaging, 2015, 9 (3) : 767-789. doi: 10.3934/ipi.2015.9.767

[18]

Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, David Isaacson, Jari P. Kaipio, Debra McGivney, Erkki Somersalo, Joseph Volzer. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part I: Theory and preliminary results. Inverse Problems & Imaging, 2015, 9 (3) : 749-766. doi: 10.3934/ipi.2015.9.749

[19]

Lassi Roininen, Janne M. J. Huttunen, Sari Lasanen. Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography. Inverse Problems & Imaging, 2014, 8 (2) : 561-586. doi: 10.3934/ipi.2014.8.561

[20]

Nuutti Hyvönen, Harri Hakula, Sampsa Pursiainen. Numerical implementation of the factorization method within the complete electrode model of electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (2) : 299-317. doi: 10.3934/ipi.2007.1.299

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (9)
  • HTML views (4)
  • Cited by (1)

Other articles
by authors

[Back to Top]