• Previous Article
    On finding an obstacle with the Leontovich boundary condition via the time domain enclosure method
  • IPI Home
  • This Issue
  • Next Article
    Non-linear Tikhonov regularization in Banach spaces for inverse scattering from anisotropic penetrable media
January  2017, 11(1): 125-149. doi: 10.3934/ipi.2017007

Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation

Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia

Received  November 2015 Revised  June 2016 Published  January 2017

Fund Project: The research is supported by the Estonian Research Council grant PUT568 and institutional research funding IUT33-24 of the Estonian Ministry of Education and Research

An inverse problem to determine a space-dependent factor in a semilinear time-fractional diffusion equation is considered. Additional data are given in the form of an integral with the Borel measure over the time. Uniqueness of the solution of the inverse problem is studied. The method uses a positivity principle of the corresponding differential equation that is also proved in the paper.

Citation: Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007
References:
[1]

M. Al-Refai and Y. Luchko, Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives, Appl. Math. Comput., 257 (2015), 40-51. doi: 10.1016/j.amc.2014.12.127. Google Scholar

[2]

E. Beretta and C. Cavaterra, Identifying a space-dependent coefficient in a reaction-diffusion equation, Inverse Problems and Imaging, 5 (2011), 285-296. doi: 10.3934/ipi.2011.5.285. Google Scholar

[3]

H. BrunnerH. Han and D. Yin, The maximum principle for time-fractional diffusion equations and its application, Numer. Funct. Anal Optim., 36 (2015), 1307-1321. doi: 10.1080/01630563.2015.1065887. Google Scholar

[4]

J. Cheng, J. Nakagawa, M. Yamamoto and T. Yamazaki, Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation, Inverse Problems 25 (2009), 115002, 16pp. Google Scholar

[5]

K. M. FuratiO. S. Iyiola and M. Kirane, An inverse problem for a generalized fractional diffusion, Appl. Math. Comput., 249 (2014), 24-31. doi: 10.1016/j.amc.2014.10.046. Google Scholar

[6]

V. GafiychukB. Datsko and V. Meleshko, Mathematical modeling of time fractional reaction-diffusion systems, J. Comput. Appl. Math., 220 (2008), 215-225. doi: 10.1016/j.cam.2007.08.011. Google Scholar

[7]

R. Gorenflo and F. Mainardi, Some recent advances in theory and simulation of fractional diffusion processes, J. Comput. Appl. Math., 229 (2009), 400-415. doi: 10.1016/j.cam.2008.04.005. Google Scholar

[8]

G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals, Math. Zeitschrift, 27 (1928), 565-606. doi: 10.1007/BF01171116. Google Scholar

[9]

V. Isakov, Inverse parabolic problems with final overdetermination, Commun. Pure Appl. Math., 44 (1991), 185-209. doi: 10.1002/cpa.3160440203. Google Scholar

[10] V. Isakov, Inverse Problems for Partial Differential Equations, 2 edition, Springer, New York, 2006. Google Scholar
[11]

J. Janno, Determination of the order of fractional derivative and a kernel in an inverse problem for a generalized time fractional diffusion equation, Electron. J. Diff. Eqns. 2016 (2016), 28pp. Google Scholar

[12]

J. Janno and K. Kasemets, A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination, Inverse Problems and Imaging, 3 (2009), 17-41. doi: 10.3934/ipi.2009.3.17. Google Scholar

[13]

B. Jin and W. Rundell, An inverse problem for a one-dimensional time-fractional diffusion problem, Inverse Problems 28 (2012), 075010, 19pp. Google Scholar

[14]

M. KiraneA. S. Malik and M. A. Al-Gwaizb, An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions, Math. Meth. Appl. Sci., 36 (2013), 1056-1069. doi: 10.1002/mma.2661. Google Scholar

[15]

M. Krasnoschok and N. Vasylyeva, On a solvability of a nonlinear fractional reaction-diffusion system in the Hölder spaces, Nonlin. Stud., 20 (2013), 591-621. Google Scholar

[16]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type AMS, Providence, Rhode Island, 1968.Google Scholar

[17]

Y. Luchko, Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation, J. Math. Anal. Appl., 374 (2011), 538-548. doi: 10.1016/j.jmaa.2010.08.048. Google Scholar

[18]

Y. Luchko, W. Rundell, M. Yamamoto and L. Zuo, Uniqueness and reconstruction of an unknown semilinear term in a time-fractional reaction-diffusion equation, Inverse Problems 29 (2013), 065019, 16pp. Google Scholar

[19] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995. Google Scholar
[20]

R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Computers Math. Appl., 59 (2010), 1586-1593. doi: 10.1016/j.camwa.2009.08.039. Google Scholar

[21] C. Miranda, Partial Differential Equations of Elliptic Type, Springer-Verlag, New York, 1970. Google Scholar
[22] J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser Verlag, Berlin, 1993. Google Scholar
[23]

S. Z. RidaA. M. A. El-Sayed and A. A. M. Arafa, On the solutions of time-fractional reaction-diffusion equations, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 3847-3854. doi: 10.1016/j.cnsns.2010.02.007. Google Scholar

[24]

K. Sakamoto and M. Yamamoto, Inverse source problem with a final overdetermination for a fractional diffusion equation, Math. Control Relat. Fields, 1 (2011), 509-518. doi: 10.3934/mcrf.2011.1.509. Google Scholar

[25]

K. SekiM. Wojcik and M. Tachiya, Fractional reaction-diffusion equation, J. Chem. Phys., 119 (2003), 2165-2170. doi: 10.1063/1.1587126. Google Scholar

[26]

H. B. Stewart, Generation of analytic semigroups by strongly elliptic operators under general boundary conditions, Trans. Amer. Math. Soc., 259 (1980), 299-310. doi: 10.1090/S0002-9947-1980-0561838-5. Google Scholar

[27] V. E. Tarasov, Fractional Dynamics. Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, New York, 2010. Google Scholar
[28]

V. Turut and N. Güzel, Comparing numerical methods for solving time-fractional reaction-diffusion equations, Intern. Scholar. Res. Notices 2012 (2012), Art. ID 737206, 28 pp. Google Scholar

[29]

T. Wei and J. Wang, A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation, Appl. Numer. Math., 78 (2014), 95-111. doi: 10.1016/j.apnum.2013.12.002. Google Scholar

[30]

R. Zacher, Quasilinear Parabolic Problems with Nonlinear Boundary Conditions Ph. D thesis, Martin-Luther-Universität Halle-Wittenberg, 2003. Available from: https://www.yumpu.com/en/document/view/4926858/quasilinear-parabolic-problems-with-nonlinear-boundary-conditionsGoogle Scholar

[31]

R. Zacher, Maximal regularity of type $L_p$ for abstract parabolic Volterra equations, J. Evol. Equ., 5 (2005), 79-103. doi: 10.1007/s00028-004-0161-z. Google Scholar

[32]

R. Zacher, Boundedness of weak solutions to evolutionary partial integro-differential equations with discontinuous coefficients, J. Math. Anal. Appl., 348 (2008), 137-149. doi: 10.1016/j.jmaa.2008.06.054. Google Scholar

[33]

G. M. Zaslavsky, Fractional kinetics and anomalous transport, Physics Reports, 371 (2002), 461-580. doi: 10.1016/S0370-1573(02)00331-9. Google Scholar

[34]

Y. Zhang and X. Xu, Inverse source problem for a fractional diffusion equation, Inverse Problems 27 (2011), 035010, 12pp. Google Scholar

show all references

References:
[1]

M. Al-Refai and Y. Luchko, Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives, Appl. Math. Comput., 257 (2015), 40-51. doi: 10.1016/j.amc.2014.12.127. Google Scholar

[2]

E. Beretta and C. Cavaterra, Identifying a space-dependent coefficient in a reaction-diffusion equation, Inverse Problems and Imaging, 5 (2011), 285-296. doi: 10.3934/ipi.2011.5.285. Google Scholar

[3]

H. BrunnerH. Han and D. Yin, The maximum principle for time-fractional diffusion equations and its application, Numer. Funct. Anal Optim., 36 (2015), 1307-1321. doi: 10.1080/01630563.2015.1065887. Google Scholar

[4]

J. Cheng, J. Nakagawa, M. Yamamoto and T. Yamazaki, Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation, Inverse Problems 25 (2009), 115002, 16pp. Google Scholar

[5]

K. M. FuratiO. S. Iyiola and M. Kirane, An inverse problem for a generalized fractional diffusion, Appl. Math. Comput., 249 (2014), 24-31. doi: 10.1016/j.amc.2014.10.046. Google Scholar

[6]

V. GafiychukB. Datsko and V. Meleshko, Mathematical modeling of time fractional reaction-diffusion systems, J. Comput. Appl. Math., 220 (2008), 215-225. doi: 10.1016/j.cam.2007.08.011. Google Scholar

[7]

R. Gorenflo and F. Mainardi, Some recent advances in theory and simulation of fractional diffusion processes, J. Comput. Appl. Math., 229 (2009), 400-415. doi: 10.1016/j.cam.2008.04.005. Google Scholar

[8]

G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals, Math. Zeitschrift, 27 (1928), 565-606. doi: 10.1007/BF01171116. Google Scholar

[9]

V. Isakov, Inverse parabolic problems with final overdetermination, Commun. Pure Appl. Math., 44 (1991), 185-209. doi: 10.1002/cpa.3160440203. Google Scholar

[10] V. Isakov, Inverse Problems for Partial Differential Equations, 2 edition, Springer, New York, 2006. Google Scholar
[11]

J. Janno, Determination of the order of fractional derivative and a kernel in an inverse problem for a generalized time fractional diffusion equation, Electron. J. Diff. Eqns. 2016 (2016), 28pp. Google Scholar

[12]

J. Janno and K. Kasemets, A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination, Inverse Problems and Imaging, 3 (2009), 17-41. doi: 10.3934/ipi.2009.3.17. Google Scholar

[13]

B. Jin and W. Rundell, An inverse problem for a one-dimensional time-fractional diffusion problem, Inverse Problems 28 (2012), 075010, 19pp. Google Scholar

[14]

M. KiraneA. S. Malik and M. A. Al-Gwaizb, An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions, Math. Meth. Appl. Sci., 36 (2013), 1056-1069. doi: 10.1002/mma.2661. Google Scholar

[15]

M. Krasnoschok and N. Vasylyeva, On a solvability of a nonlinear fractional reaction-diffusion system in the Hölder spaces, Nonlin. Stud., 20 (2013), 591-621. Google Scholar

[16]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type AMS, Providence, Rhode Island, 1968.Google Scholar

[17]

Y. Luchko, Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation, J. Math. Anal. Appl., 374 (2011), 538-548. doi: 10.1016/j.jmaa.2010.08.048. Google Scholar

[18]

Y. Luchko, W. Rundell, M. Yamamoto and L. Zuo, Uniqueness and reconstruction of an unknown semilinear term in a time-fractional reaction-diffusion equation, Inverse Problems 29 (2013), 065019, 16pp. Google Scholar

[19] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995. Google Scholar
[20]

R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Computers Math. Appl., 59 (2010), 1586-1593. doi: 10.1016/j.camwa.2009.08.039. Google Scholar

[21] C. Miranda, Partial Differential Equations of Elliptic Type, Springer-Verlag, New York, 1970. Google Scholar
[22] J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser Verlag, Berlin, 1993. Google Scholar
[23]

S. Z. RidaA. M. A. El-Sayed and A. A. M. Arafa, On the solutions of time-fractional reaction-diffusion equations, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 3847-3854. doi: 10.1016/j.cnsns.2010.02.007. Google Scholar

[24]

K. Sakamoto and M. Yamamoto, Inverse source problem with a final overdetermination for a fractional diffusion equation, Math. Control Relat. Fields, 1 (2011), 509-518. doi: 10.3934/mcrf.2011.1.509. Google Scholar

[25]

K. SekiM. Wojcik and M. Tachiya, Fractional reaction-diffusion equation, J. Chem. Phys., 119 (2003), 2165-2170. doi: 10.1063/1.1587126. Google Scholar

[26]

H. B. Stewart, Generation of analytic semigroups by strongly elliptic operators under general boundary conditions, Trans. Amer. Math. Soc., 259 (1980), 299-310. doi: 10.1090/S0002-9947-1980-0561838-5. Google Scholar

[27] V. E. Tarasov, Fractional Dynamics. Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, New York, 2010. Google Scholar
[28]

V. Turut and N. Güzel, Comparing numerical methods for solving time-fractional reaction-diffusion equations, Intern. Scholar. Res. Notices 2012 (2012), Art. ID 737206, 28 pp. Google Scholar

[29]

T. Wei and J. Wang, A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation, Appl. Numer. Math., 78 (2014), 95-111. doi: 10.1016/j.apnum.2013.12.002. Google Scholar

[30]

R. Zacher, Quasilinear Parabolic Problems with Nonlinear Boundary Conditions Ph. D thesis, Martin-Luther-Universität Halle-Wittenberg, 2003. Available from: https://www.yumpu.com/en/document/view/4926858/quasilinear-parabolic-problems-with-nonlinear-boundary-conditionsGoogle Scholar

[31]

R. Zacher, Maximal regularity of type $L_p$ for abstract parabolic Volterra equations, J. Evol. Equ., 5 (2005), 79-103. doi: 10.1007/s00028-004-0161-z. Google Scholar

[32]

R. Zacher, Boundedness of weak solutions to evolutionary partial integro-differential equations with discontinuous coefficients, J. Math. Anal. Appl., 348 (2008), 137-149. doi: 10.1016/j.jmaa.2008.06.054. Google Scholar

[33]

G. M. Zaslavsky, Fractional kinetics and anomalous transport, Physics Reports, 371 (2002), 461-580. doi: 10.1016/S0370-1573(02)00331-9. Google Scholar

[34]

Y. Zhang and X. Xu, Inverse source problem for a fractional diffusion equation, Inverse Problems 27 (2011), 035010, 12pp. Google Scholar

[1]

Kenichi Sakamoto, Masahiro Yamamoto. Inverse source problem with a final overdetermination for a fractional diffusion equation. Mathematical Control & Related Fields, 2011, 1 (4) : 509-518. doi: 10.3934/mcrf.2011.1.509

[2]

Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations & Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007

[3]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[4]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[5]

Jesus Ildefonso Díaz, Jacqueline Fleckinger-Pellé. Positivity for large time of solutions of the heat equation: the parabolic antimaximum principle. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 193-200. doi: 10.3934/dcds.2004.10.193

[6]

Jaan Janno, Kairi Kasemets. A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination. Inverse Problems & Imaging, 2009, 3 (1) : 17-41. doi: 10.3934/ipi.2009.3.17

[7]

Junxiong Jia, Jigen Peng, Jinghuai Gao, Yujiao Li. Backward problem for a time-space fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (3) : 773-799. doi: 10.3934/ipi.2018033

[8]

Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic & Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039

[9]

Ricardo Almeida, Agnieszka B. Malinowska. Fractional variational principle of Herglotz. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2367-2381. doi: 10.3934/dcdsb.2014.19.2367

[10]

Barbara Kaltenbacher, William Rundell. Regularization of a backwards parabolic equation by fractional operators. Inverse Problems & Imaging, 2019, 13 (2) : 401-430. doi: 10.3934/ipi.2019020

[11]

Wafa Hamrouni, Ali Abdennadher. Random walk's models for fractional diffusion equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2509-2530. doi: 10.3934/dcdsb.2016058

[12]

Luis Caffarelli, Juan-Luis Vázquez. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1393-1404. doi: 10.3934/dcds.2011.29.1393

[13]

Eugenio Montefusco, Benedetta Pellacci, Gianmaria Verzini. Fractional diffusion with Neumann boundary conditions: The logistic equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2175-2202. doi: 10.3934/dcdsb.2013.18.2175

[14]

Ciprian G. Gal, Mahamadi Warma. Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions. Evolution Equations & Control Theory, 2016, 5 (1) : 61-103. doi: 10.3934/eect.2016.5.61

[15]

Hongjie Dong, Dong Li. On a generalized maximum principle for a transport-diffusion model with $\log$-modulated fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3437-3454. doi: 10.3934/dcds.2014.34.3437

[16]

Jacques Giacomoni, Tuhina Mukherjee, Konijeti Sreenadh. Existence and stabilization results for a singular parabolic equation involving the fractional Laplacian. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 311-337. doi: 10.3934/dcdss.2019022

[17]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[18]

Pedro Aceves-Sánchez, Christian Schmeiser. Fractional diffusion limit of a linear kinetic equation in a bounded domain. Kinetic & Related Models, 2017, 10 (3) : 541-551. doi: 10.3934/krm.2017021

[19]

Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (5) : 875-900. doi: 10.3934/ipi.2017041

[20]

Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (24)
  • HTML views (110)
  • Cited by (3)

Other articles
by authors

[Back to Top]