# American Institute of Mathematical Sciences

January  2017, 11(1): 25-45. doi: 10.3934/ipi.2017002

## A source time reversal method for seismicity induced by mining

 1 Departamento de Ingeniería Matemática, Universidad de Chile, Beauchef 851, Edificio Norte, Casilla 170-3, Correo 3, Santiago, Chile 2 Departamento de Ingeniería Matemática & Centro de Modelamiento Matemático, Universidad de Chile, Beauchef 851, Edificio Norte, Casilla 170-3, Correo 3, Santiago, Chile 3 Universidad del País Vasco (UPV/EHU), Leioa, Spain 4 Basque Center for Applied Mathematics (BCAM), Bilbao, Spain 5 Ikerbasque, Bilbao, Spain

Received  February 2016 Revised  July 2016 Published  January 2017

In this work, we present a modified Time-Reversal Mirror (TRM) Method, called Source Time Reversal (STR), to find the spatial distribution of a seismic source induced by mining activity. This methodology is based on a known full description of the temporal dependence of the source, the Duhamel's principle, and the time-reverse property of the wave equation. We also provide an error estimate of the reconstruction when the measurements are acquired over the entire boundary, and we show experimentally the influence of measuring on a subdomain of the boundary. Numerical results indicate that the methodology is able to recover continuous and discontinuous sources, and it remains stable for partial boundary measurements.

Citation: Rodrigo I. Brevis, Jaime H. Ortega, David Pardo. A source time reversal method for seismicity induced by mining. Inverse Problems & Imaging, 2017, 11 (1) : 25-45. doi: 10.3934/ipi.2017002
##### References:

show all references

##### References:
Diagram of STR method describing how to recover the source term $f(x)$
Functions selected as temporal source terms $g(t)$
Functions selected as spatial source terms $f(x)$
Spatial source term reconstruction for the different sources $f_i(x)g_j(t)$ $i,j\in\{1,2,3\}$
Functions selected as temporal source terms $g(t)$ to generate tremors
Spatial source term reconstruction using $g_\gamma(t)$ for the sources $f_i(x)g_a(t)$
Spatial source term reconstruction using $g_\gamma(t)$ for the sources $f_i(x)g_b(t)$
Relative error variation of the reconstruction with respect to the constant $c_0$
(a) Original function $f_4(x)$ and (b)-(j) Reconstructions $\widetilde{f}_4(x)$ for different sources and values of constant $c_0$
Space-and time-dependence in the synthetic seismic experiment
Spatial source term reconstruction in seismic experiments
Summary of the relative error $\frac{\|\widetilde f_i - f_i\|_{L^2}}{\|f_i\|_{L^2}}$ in experiment smoothness of $f(x)$ and $g(t)$
 f1(x) f2(x) f3(x) g1(t) 0.7% 2.2% 8.7% g2(t) 1.3% 2.2% 8.2% g3(t) 0.9% 1.8% 4.1%
 f1(x) f2(x) f3(x) g1(t) 0.7% 2.2% 8.7% g2(t) 1.3% 2.2% 8.2% g3(t) 0.9% 1.8% 4.1%
Summary of the relative error $\frac{\|\widetilde f_i-f_i\|_{L^2}}{\|f_i\|_{L^2}}$ in experiment sensitivity with respect to $g(t)$
 f1(x)ga(t) f2(x)ga(t) f3(x)ga(t) f1(x)gb(t) f2(x)gb(t) f3(x)gb(t) γ = 0.6 24.3% 29.4% 43.4% 25.4% 28.5% 43.3% γ = 0.7 14.2% 19.4% 30.2% 10.3% 17.7% 32.1% γ = 0.8 11.6% 12.1% 23.5% 6.3% 7.5% 18.3% γ = 0.9 15.0% 19.5% 29.2% 21.5% 27.7% 30.9% γ = 1.0 34.9% 29.6% 41.7% 47.0% 31.7% 47.1%
 f1(x)ga(t) f2(x)ga(t) f3(x)ga(t) f1(x)gb(t) f2(x)gb(t) f3(x)gb(t) γ = 0.6 24.3% 29.4% 43.4% 25.4% 28.5% 43.3% γ = 0.7 14.2% 19.4% 30.2% 10.3% 17.7% 32.1% γ = 0.8 11.6% 12.1% 23.5% 6.3% 7.5% 18.3% γ = 0.9 15.0% 19.5% 29.2% 21.5% 27.7% 30.9% γ = 1.0 34.9% 29.6% 41.7% 47.0% 31.7% 47.1%
Relative errors when reconstructing Phantom's source
 $f_4(x)g_1(t)$ $35.8\%$ $\bf 13.2\%$ $30.9\%$ (Fig. 9b; $c_0=0$) (Fig. 9c; $c_0=2 \times {10^{ - 5}}$) (Fig. 9d; $c_0=0.01$) $f_4(x)g_2(t)$ $17.5\%$ $\bf 11.1\%$ $25.8\%$ (Fig. 9e; $c_0=0$) (Fig. 9f; $c_0=7 \times {10^{ - 4}}$) (Fig. 9g; $c_0=0.05$) $f_4(x)g_3(t)$ $8.0\%$ $\bf 5.7\%$ $8.2\%$ (Fig. 9h; $c_0=10^{-5}$) (Fig. 9i; $c_0=0.01$) (Fig. 9j; $c_0=0.1$)
 $f_4(x)g_1(t)$ $35.8\%$ $\bf 13.2\%$ $30.9\%$ (Fig. 9b; $c_0=0$) (Fig. 9c; $c_0=2 \times {10^{ - 5}}$) (Fig. 9d; $c_0=0.01$) $f_4(x)g_2(t)$ $17.5\%$ $\bf 11.1\%$ $25.8\%$ (Fig. 9e; $c_0=0$) (Fig. 9f; $c_0=7 \times {10^{ - 4}}$) (Fig. 9g; $c_0=0.05$) $f_4(x)g_3(t)$ $8.0\%$ $\bf 5.7\%$ $8.2\%$ (Fig. 9h; $c_0=10^{-5}$) (Fig. 9i; $c_0=0.01$) (Fig. 9j; $c_0=0.1$)
 [1] Kenrick Bingham, Yaroslav Kurylev, Matti Lassas, Samuli Siltanen. Iterative time-reversal control for inverse problems. Inverse Problems & Imaging, 2008, 2 (1) : 63-81. doi: 10.3934/ipi.2008.2.63 [2] Kazufumi Ito, Karim Ramdani, Marius Tucsnak. A time reversal based algorithm for solving initial data inverse problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 641-652. doi: 10.3934/dcdss.2011.4.641 [3] Albert Fannjiang, Knut Solna. Time reversal of parabolic waves and two-frequency Wigner distribution. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 783-802. doi: 10.3934/dcdsb.2006.6.783 [4] Corinna Burkard, Aurelia Minut, Karim Ramdani. Far field model for time reversal and application to selective focusing on small dielectric inhomogeneities. Inverse Problems & Imaging, 2013, 7 (2) : 445-470. doi: 10.3934/ipi.2013.7.445 [5] Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems & Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059 [6] Guanghui Hu, Andreas Kirsch, Tao Yin. Factorization method in inverse interaction problems with bi-periodic interfaces between acoustic and elastic waves. Inverse Problems & Imaging, 2016, 10 (1) : 103-129. doi: 10.3934/ipi.2016.10.103 [7] Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014 [8] Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032 [9] Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Inverse problems for evolution equations with time dependent operator-coefficients. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 737-744. doi: 10.3934/dcdss.2016025 [10] Victor Isakov, Shuai Lu. Inverse source problems without (pseudo) convexity assumptions. Inverse Problems & Imaging, 2018, 12 (4) : 955-970. doi: 10.3934/ipi.2018040 [11] Martin Hanke, William Rundell. On rational approximation methods for inverse source problems. Inverse Problems & Imaging, 2011, 5 (1) : 185-202. doi: 10.3934/ipi.2011.5.185 [12] Mourad Sini, Nguyen Trung Thành. Inverse acoustic obstacle scattering problems using multifrequency measurements. Inverse Problems & Imaging, 2012, 6 (4) : 749-773. doi: 10.3934/ipi.2012.6.749 [13] Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 [14] Charles L. Epstein, Leslie Greengard, Thomas Hagstrom. On the stability of time-domain integral equations for acoustic wave propagation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4367-4382. doi: 10.3934/dcds.2016.36.4367 [15] Xiaoliang Cheng, Rongfang Gong, Weimin Han. A new Kohn-Vogelius type formulation for inverse source problems. Inverse Problems & Imaging, 2015, 9 (4) : 1051-1067. doi: 10.3934/ipi.2015.9.1051 [16] Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems & Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010 [17] Ahmed Tarajo Buba, Lai Soon Lee. Differential evolution with improved sub-route reversal repair mechanism for multiobjective urban transit routing problem. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 351-376. doi: 10.3934/naco.2018023 [18] Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577 [19] Yuri Gaididei, Anders Rønne Rasmussen, Peter Leth Christiansen, Mads Peter Sørensen. Oscillating nonlinear acoustic shock waves. Evolution Equations & Control Theory, 2016, 5 (3) : 367-381. doi: 10.3934/eect.2016009 [20] Thierry Cazenave, Yvan Martel, Lifeng Zhao. Finite-time blowup for a Schrödinger equation with nonlinear source term. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1171-1183. doi: 10.3934/dcds.2019050

2018 Impact Factor: 1.469