# American Institute of Mathematical Sciences

August  2016, 10(3): 855-868. doi: 10.3934/ipi.2016024

## The reciprocity gap method for a cavity in an inhomogeneous medium

 1 Postdoctoral Station of Optical Engineering, Institute of Computing and Data Sciences, College of Mathematics and Statistics, Chongqing University, Chongqing 400044, China 2 Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190 3 Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931 4 Institute of Computing and Data Sciences, College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China

Received  April 2015 Revised  February 2016 Published  August 2016

We consider an interior inverse medium problem of reconstructing the shape of a cavity. Both the measurement locations and point sources are inside the cavity. Due to the lack of a priori knowledge of physical prosperities of the medium inside the cavity and to avoid the computation of background Green's functions, the reciprocity gap method is employed. We prove the related theory and present some numerical examples for validation.
Citation: Fang Zeng, Xiaodong Liu, Jiguang Sun, Liwei Xu. The reciprocity gap method for a cavity in an inhomogeneous medium. Inverse Problems & Imaging, 2016, 10 (3) : 855-868. doi: 10.3934/ipi.2016024
##### References:
 [1] T. Arens, Why linear sampling works,, Inverse Problems, 20 (2004), 163. doi: 10.1088/0266-5611/20/1/010. Google Scholar [2] F. Cakoni and D. Colton, Qualitative Approach to Inverse Scattering Theory,, Springer, (2014). doi: 10.1007/978-1-4612-0873-0. Google Scholar [3] F. Cakoni, D. Colton and S. Meng, The inverse scattering problem for a penetrable cavity with internal measurements,, AMS Contemporary Mathematics, 615 (2014), 71. doi: 10.1090/conm/615/12246. Google Scholar [4] F. Cakoni, D. Colton and H. Haddar, The linear sampling method for anisotropic media,, J. Comput. Appl. Math., 146 (2002), 285. doi: 10.1016/S0377-0427(02)00361-8. Google Scholar [5] D. Colton and H. Haddar, An application of the reciprocity gap functional to inverse scattering theory,, Inverse Problems, 21 (2005), 383. doi: 10.1088/0266-5611/21/1/023. Google Scholar [6] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Pure and Applied Mathematics,, John Wiley & Sons Inc., (1983). doi: 10.1007/978-1-4612-0873-0. Google Scholar [7] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, $2^{nd}$ Edition, (1998). doi: 10.1007/978-1-4612-0873-0. Google Scholar [8] D. Colton and B. D. Sleeman, An approximation property of importance in inverse scattering theory,, Proc. Edinburgh Math. Soc., 44 (2001), 449. doi: 10.1017/S0013091500000626. Google Scholar [9] M. D. Cristo and J. Sun, An inverse scattering problem for a partially coated buried obstacle,, Inverse Problems, 22 (2006), 2331. doi: 10.1088/0266-5611/22/6/025. Google Scholar [10] G. Hu and X. Liu, Unique determination of balls and polyhedral scatters with a single point source wave,, Inverse Problems, 30 (2014). doi: 10.1088/0266-5611/30/6/065010. Google Scholar [11] Y. Hu, F. Cakoni and J. Liu, The inverse scattering problem for a partially coated cavity with interior measurements,, Applicable Analysis, 93 (2013), 936. doi: 10.1080/00036811.2013.801458. Google Scholar [12] P. Jakubik and R. Potthast, Testing the integrity of some cavity - the Cauchy problem and the range test,, Appl. Numer. Math., 58 (2008), 899. doi: 10.1016/j.apnum.2007.04.007. Google Scholar [13] J. Li, H. Liu and J. Zou, Strengthened linear sampling method with a reference ball,, SIAM J. Sci. Comput., 31 (2009), 4013. doi: 10.1137/080734170. Google Scholar [14] P. Li and Y. Wang, Near-field imaging of interior cavities,, Commun. Comput. Phys., 17 (2015), 542. doi: 10.4208/cicp.010414.250914a. Google Scholar [15] X. Liu, The factorization method for cavities,, Inverse Problems, 30 (2014). doi: 10.1088/0266-5611/30/1/015006. Google Scholar [16] P. Monk and J. Sun, Inverse scattering using finite elements and gap reciprocity,, Inverse Problems and Imaging, 1 (2007), 643. doi: 10.3934/ipi.2007.1.643. Google Scholar [17] P. Monk and V. Selgas, Sampling type methods for an inverse waveguide problem,, Inverse Problems and Imaging, 6 (2012), 709. doi: 10.3934/ipi.2012.6.709. Google Scholar [18] S. Meng, H Haddar and F. Cakoni, The factorization method for a cavity in an inhomogeneous medium,, Inverse Problems, 30 (2014). doi: 10.1088/0266-5611/30/4/045008. Google Scholar [19] M. Powell, Approximation Theory and Methods,, Cambridge University Press, (1981). doi: 10.1007/978-1-4612-0873-0. Google Scholar [20] H. Qin and F. Cakoni, Nonlinear integral equations for shape reconstruction in the inverse interior scattering problem,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/3/035005. Google Scholar [21] H. Qin and D. Colton, The inverse scattering problem for cavities,, Applied Numerical Mathematics, 62 (2012), 699. doi: 10.1016/j.apnum.2010.10.011. Google Scholar [22] H. Qin and D. Colton, The inverse scattering problem for cavities with impedance boundary condition,, Advances in Computational Mathematics, 36 (2012), 157. doi: 10.1007/s10444-011-9179-2. Google Scholar [23] H. Qin and X. Liu, The interior inverse scattering problem for cavities with an artificial obstacle,, Applied Numerical Mathematics, 88 (2015), 18. doi: 10.1016/j.apnum.2014.10.002. Google Scholar [24] G. Uhlmann, Inverse scattering in anisotropic media,, in Chapter Surveys on Solution Methods for Inverse Problems, (2000), 235. doi: 10.1007/978-1-4612-0873-0. Google Scholar [25] F. Zeng, F. Cakoni and J. Sun, An inverse electromagnetic scattering problem for a cavity,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/12/125002. Google Scholar [26] F. Zeng, P. Suarez and J. Sun, A decomposition method for an interior inverse scattering problem,, Inverse Problems and Imaging, 7 (2013), 291. doi: 10.3934/ipi.2013.7.291. Google Scholar [27] F. Zeng, X. Liu, J. Sun and L. Xu, Reciprocity gap method for an interior inverse scattering problem,, Journal of Inverse and Ill-posed Problems, online (2016). doi: 10.1515/jiip-2015-0064. Google Scholar

show all references

##### References:
 [1] T. Arens, Why linear sampling works,, Inverse Problems, 20 (2004), 163. doi: 10.1088/0266-5611/20/1/010. Google Scholar [2] F. Cakoni and D. Colton, Qualitative Approach to Inverse Scattering Theory,, Springer, (2014). doi: 10.1007/978-1-4612-0873-0. Google Scholar [3] F. Cakoni, D. Colton and S. Meng, The inverse scattering problem for a penetrable cavity with internal measurements,, AMS Contemporary Mathematics, 615 (2014), 71. doi: 10.1090/conm/615/12246. Google Scholar [4] F. Cakoni, D. Colton and H. Haddar, The linear sampling method for anisotropic media,, J. Comput. Appl. Math., 146 (2002), 285. doi: 10.1016/S0377-0427(02)00361-8. Google Scholar [5] D. Colton and H. Haddar, An application of the reciprocity gap functional to inverse scattering theory,, Inverse Problems, 21 (2005), 383. doi: 10.1088/0266-5611/21/1/023. Google Scholar [6] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Pure and Applied Mathematics,, John Wiley & Sons Inc., (1983). doi: 10.1007/978-1-4612-0873-0. Google Scholar [7] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, $2^{nd}$ Edition, (1998). doi: 10.1007/978-1-4612-0873-0. Google Scholar [8] D. Colton and B. D. Sleeman, An approximation property of importance in inverse scattering theory,, Proc. Edinburgh Math. Soc., 44 (2001), 449. doi: 10.1017/S0013091500000626. Google Scholar [9] M. D. Cristo and J. Sun, An inverse scattering problem for a partially coated buried obstacle,, Inverse Problems, 22 (2006), 2331. doi: 10.1088/0266-5611/22/6/025. Google Scholar [10] G. Hu and X. Liu, Unique determination of balls and polyhedral scatters with a single point source wave,, Inverse Problems, 30 (2014). doi: 10.1088/0266-5611/30/6/065010. Google Scholar [11] Y. Hu, F. Cakoni and J. Liu, The inverse scattering problem for a partially coated cavity with interior measurements,, Applicable Analysis, 93 (2013), 936. doi: 10.1080/00036811.2013.801458. Google Scholar [12] P. Jakubik and R. Potthast, Testing the integrity of some cavity - the Cauchy problem and the range test,, Appl. Numer. Math., 58 (2008), 899. doi: 10.1016/j.apnum.2007.04.007. Google Scholar [13] J. Li, H. Liu and J. Zou, Strengthened linear sampling method with a reference ball,, SIAM J. Sci. Comput., 31 (2009), 4013. doi: 10.1137/080734170. Google Scholar [14] P. Li and Y. Wang, Near-field imaging of interior cavities,, Commun. Comput. Phys., 17 (2015), 542. doi: 10.4208/cicp.010414.250914a. Google Scholar [15] X. Liu, The factorization method for cavities,, Inverse Problems, 30 (2014). doi: 10.1088/0266-5611/30/1/015006. Google Scholar [16] P. Monk and J. Sun, Inverse scattering using finite elements and gap reciprocity,, Inverse Problems and Imaging, 1 (2007), 643. doi: 10.3934/ipi.2007.1.643. Google Scholar [17] P. Monk and V. Selgas, Sampling type methods for an inverse waveguide problem,, Inverse Problems and Imaging, 6 (2012), 709. doi: 10.3934/ipi.2012.6.709. Google Scholar [18] S. Meng, H Haddar and F. Cakoni, The factorization method for a cavity in an inhomogeneous medium,, Inverse Problems, 30 (2014). doi: 10.1088/0266-5611/30/4/045008. Google Scholar [19] M. Powell, Approximation Theory and Methods,, Cambridge University Press, (1981). doi: 10.1007/978-1-4612-0873-0. Google Scholar [20] H. Qin and F. Cakoni, Nonlinear integral equations for shape reconstruction in the inverse interior scattering problem,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/3/035005. Google Scholar [21] H. Qin and D. Colton, The inverse scattering problem for cavities,, Applied Numerical Mathematics, 62 (2012), 699. doi: 10.1016/j.apnum.2010.10.011. Google Scholar [22] H. Qin and D. Colton, The inverse scattering problem for cavities with impedance boundary condition,, Advances in Computational Mathematics, 36 (2012), 157. doi: 10.1007/s10444-011-9179-2. Google Scholar [23] H. Qin and X. Liu, The interior inverse scattering problem for cavities with an artificial obstacle,, Applied Numerical Mathematics, 88 (2015), 18. doi: 10.1016/j.apnum.2014.10.002. Google Scholar [24] G. Uhlmann, Inverse scattering in anisotropic media,, in Chapter Surveys on Solution Methods for Inverse Problems, (2000), 235. doi: 10.1007/978-1-4612-0873-0. Google Scholar [25] F. Zeng, F. Cakoni and J. Sun, An inverse electromagnetic scattering problem for a cavity,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/12/125002. Google Scholar [26] F. Zeng, P. Suarez and J. Sun, A decomposition method for an interior inverse scattering problem,, Inverse Problems and Imaging, 7 (2013), 291. doi: 10.3934/ipi.2013.7.291. Google Scholar [27] F. Zeng, X. Liu, J. Sun and L. Xu, Reciprocity gap method for an interior inverse scattering problem,, Journal of Inverse and Ill-posed Problems, online (2016). doi: 10.1515/jiip-2015-0064. Google Scholar
 [1] Peter Monk, Jiguang Sun. Inverse scattering using finite elements and gap reciprocity. Inverse Problems & Imaging, 2007, 1 (4) : 643-660. doi: 10.3934/ipi.2007.1.643 [2] Roland Griesmaier. Reciprocity gap music imaging for an inverse scattering problem in two-layered media. Inverse Problems & Imaging, 2009, 3 (3) : 389-403. doi: 10.3934/ipi.2009.3.389 [3] Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291 [4] Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems & Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211 [5] Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681 [6] Fenglong Qu, Jiaqing Yang. On recovery of an inhomogeneous cavity in inverse acoustic scattering. Inverse Problems & Imaging, 2018, 12 (2) : 281-291. doi: 10.3934/ipi.2018012 [7] Guillermo Reyes, Juan-Luis Vázquez. The Cauchy problem for the inhomogeneous porous medium equation. Networks & Heterogeneous Media, 2006, 1 (2) : 337-351. doi: 10.3934/nhm.2006.1.337 [8] Michael V. Klibanov, Loc H. Nguyen, Anders Sullivan, Lam Nguyen. A globally convergent numerical method for a 1-d inverse medium problem with experimental data. Inverse Problems & Imaging, 2016, 10 (4) : 1057-1085. doi: 10.3934/ipi.2016032 [9] Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems & Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010 [10] Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems & Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139 [11] Giovanni Bozza, Massimo Brignone, Matteo Pastorino, Andrea Randazzo, Michele Piana. Imaging of unknown targets inside inhomogeneous backgrounds by means of qualitative inverse scattering. Inverse Problems & Imaging, 2009, 3 (2) : 231-241. doi: 10.3934/ipi.2009.3.231 [12] Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027 [13] Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems & Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042 [14] Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577 [15] Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems & Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263 [16] Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551 [17] Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 [18] Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems & Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757 [19] Christodoulos E. Athanasiadis, Vassilios Sevroglou, Konstantinos I. Skourogiannis. The inverse electromagnetic scattering problem by a mixed impedance screen in chiral media. Inverse Problems & Imaging, 2015, 9 (4) : 951-970. doi: 10.3934/ipi.2015.9.951 [20] Peijun Li, Ganghua Yuan. Increasing stability for the inverse source scattering problem with multi-frequencies. Inverse Problems & Imaging, 2017, 11 (4) : 745-759. doi: 10.3934/ipi.2017035

2018 Impact Factor: 1.469