• Previous Article
    The inverse problem for electroseismic conversion: Stable recovery of the conductivity and the electrokinetic mobility parameter
  • IPI Home
  • This Issue
  • Next Article
    An efficient projection method for nonlinear inverse problems with sparsity constraints
August  2016, 10(3): 659-688. doi: 10.3934/ipi.2016016

Local inverse scattering at fixed energy in spherically symmetric asymptotically hyperbolic manifolds

1. 

Département de Mathématiques, Université de Cergy-Pontoise, UMR CNRS 8088, 2 Av. Adolphe Chauvin, 95302 Cergy-Pontoise cedex, France

2. 

Département de Mathématiques, Université de Nantes, 2, rue de la Houssinière, BP 92208, 44322 Nantes cedex 03, France, France

Received  January 2015 Revised  October 2015 Published  August 2016

In this paper, we adapt the well-known local uniqueness results of Borg-Marchenko type in the inverse problems for one dimensional Schrödinger equation to prove local uniqueness results in the setting of inverse metric problems. More specifically, we consider a class of spherically symmetric manifolds having two asymptotically hyperbolic ends and study the scattering properties of massless Dirac waves evolving on such manifolds. Using the spherical symmetry of the model, the stationary scattering is encoded by a countable family of one-dimensional Dirac equations. This allows us to define the corresponding transmission coefficients $T(\lambda,n)$ and reflection coefficients $L(\lambda,n)$ and $R(\lambda,n)$ of a Dirac wave having a fixed energy $\lambda$ and angular momentum $n$. For instance, the reflection coefficients $L(\lambda,n)$ correspond to the scattering experiment in which a wave is sent from the left end in the remote past and measured in the same left end in the future. The main result of this paper is an inverse uniqueness result local in nature. Namely, we prove that for a fixed $\lambda \not=0$, the knowledge of the reflection coefficients $L(\lambda,n)$ (resp. $R(\lambda,n)$) - up to a precise error term of the form $O(e^{-2nB})$ with $B>0$ - determines the manifold in a neighbourhood of the left (resp. right) end, the size of this neighbourhood depending on the magnitude $B$ of the error term. The crucial ingredients in the proof of this result are the Complex Angular Momentum method as well as some useful uniqueness results for Laplace transforms.
Citation: Thierry Daudé, Damien Gobin, François Nicoleau. Local inverse scattering at fixed energy in spherically symmetric asymptotically hyperbolic manifolds. Inverse Problems & Imaging, 2016, 10 (3) : 659-688. doi: 10.3934/ipi.2016016
References:
[1]

T. Aktosun, M. Klaus and C. van der Mee, Direct and inverse scattering for selfadjoint Hamiltonian systems on the line,, Integr. Equa. Oper. Theory, 38 (2000), 129. doi: 10.1007/BF01200121. Google Scholar

[2]

C. Bennewitz, A proof of the local Borg-Marchenko Theorem,, Comm. Math. Phys., 218 (2001), 131. doi: 10.1007/s002200100384. Google Scholar

[3]

R. P. Boas, Entire Functions,, Academic Press, (1954). Google Scholar

[4]

D. Borthwick and P. A. Perry, Inverse scattering results for manifolds hyperbolic near infinity,, J. of Geom. Anal., 21 (2001), 305. doi: 10.1007/s12220-010-9149-9. Google Scholar

[5]

J. M. Cohen and R. T. Powers, The general relativistic hydrogen atom,, Comm. Math. Phys., 86 (1982), 69. doi: 10.1007/BF01205662. Google Scholar

[6]

T. Daudé, Time-dependent scattering theory for massive charged Dirac fields by a Reissner-Nordström black hole,, J. Math. Phys., 51 (2010). doi: 10.1063/1.3499403. Google Scholar

[7]

T. Daudé, N. Kamran and F. Nicoleau, Inverse scattering at fixed energy on asymptotically hyperbolic Liouville surfaces,, to appear in Inverse Problems, (). Google Scholar

[8]

T. Daudé and F. Nicoleau, Inverse scattering in (de Sitter)-Reissner-Nordström black hole spacetimes,, Rev. Math. Phys., 22 (2010), 431. doi: 10.1142/S0129055X10004004. Google Scholar

[9]

T. Daudé and F. Nicoleau, Inverse scattering at fixed energy in de Sitter-Reissner-Nordström black holes,, Annales Henri Poincaré, 12 (2011), 1. doi: 10.1007/s00023-010-0069-9. Google Scholar

[10]

G. Freiling and V. Yurko, Inverse problems for differential operators with singular boundary conditions,, Math. Nachr., 278 (2005), 1561. doi: 10.1002/mana.200410322. Google Scholar

[11]

F. Gesztesy and B. Simon, On local Borg-Marchenko uniqueness results,, Comm. Math. Phys., 211 (2005), 273. doi: 10.1007/s002200050812. Google Scholar

[12]

M. Horváth, Partial identification of the potential from phase shifts,, J. Math. Anal. Appl., 380 (2011), 726. doi: 10.1016/j.jmaa.2010.10.071. Google Scholar

[13]

H. Isozaki and J. Kurylev, Introduction to spectral theory and inverse problems on asymptotically hyperbolic manifolds,, MSJ Memoirs, (2014). doi: 10.1142/e040. Google Scholar

[14]

M. S. Joshi and A. Sá Barreto, Inverse scattering on asymptotically hyperbolic manifolds,, Acta Mathematica, 184 (2000), 41. doi: 10.1007/BF02392781. Google Scholar

[15]

K. Lake, Reissner-Nordström-de Sitter metric, the third law, and cosmic censorship,, Phys. Rev. D., 19 (1979), 421. doi: 10.1103/PhysRevD.19.421. Google Scholar

[16]

B. Y. Levin, Lectures on Entire Functions,, Translations of Mathematical Monograph, 150 (1996). Google Scholar

[17]

F. Melnik, Scattering on Reissner-Nordström metric for massive charged spin $\frac{1}{2}$ fields,, Annales Henri Poincaré, 4 (2003), 813. doi: 10.1007/s00023-003-0148-2. Google Scholar

[18]

J.-P. Nicolas, Scattering of linear Dirac fields by a spherically symmetric black hole,, Annales Institut Henri Poincaré, 62 (1995), 145. Google Scholar

[19]

A. G. Ramm, An Inverse Scattering Problem with part of the Fixed-Energy Phase shifts,, Comm. Math. Phys., 207 (1999), 231. doi: 10.1007/s002200050725. Google Scholar

[20]

T. Regge, Introduction to complex orbital momenta,, Nuevo Cimento, 14 (1959), 951. doi: 10.1007/BF02728177. Google Scholar

[21]

A. Sá Barreto, Radiation fields, scattering and inverse scattering on asymptotically hyperbolic manifolds,, Duke Math. Journal, 129 (2005), 407. doi: 10.1215/S0012-7094-05-12931-3. Google Scholar

[22]

W. Rudin, Real and Complex Analysis, Third edition,, McGraw-Hill Book Company, (1987). Google Scholar

[23]

B. Simon, A new approach to inverse spectral theory, I. fundamental formalism,, Annals of Math., 150 (1999), 1029. doi: 10.2307/121061. Google Scholar

[24]

G. Teschl, Mathematical Methods in Quantum Mechanics,, Graduate Studies in Mathematics, 99 (2009). doi: 10.1090/gsm/099. Google Scholar

[25]

B. Thaller, The Dirac Equation,, Texts and Monographs in Physics, (1992). doi: 10.1007/978-3-662-02753-0. Google Scholar

[26]

R. M. Wald, General Relativity,, The University of Chicago Press, (1984). doi: 10.7208/chicago/9780226870373.001.0001. Google Scholar

show all references

References:
[1]

T. Aktosun, M. Klaus and C. van der Mee, Direct and inverse scattering for selfadjoint Hamiltonian systems on the line,, Integr. Equa. Oper. Theory, 38 (2000), 129. doi: 10.1007/BF01200121. Google Scholar

[2]

C. Bennewitz, A proof of the local Borg-Marchenko Theorem,, Comm. Math. Phys., 218 (2001), 131. doi: 10.1007/s002200100384. Google Scholar

[3]

R. P. Boas, Entire Functions,, Academic Press, (1954). Google Scholar

[4]

D. Borthwick and P. A. Perry, Inverse scattering results for manifolds hyperbolic near infinity,, J. of Geom. Anal., 21 (2001), 305. doi: 10.1007/s12220-010-9149-9. Google Scholar

[5]

J. M. Cohen and R. T. Powers, The general relativistic hydrogen atom,, Comm. Math. Phys., 86 (1982), 69. doi: 10.1007/BF01205662. Google Scholar

[6]

T. Daudé, Time-dependent scattering theory for massive charged Dirac fields by a Reissner-Nordström black hole,, J. Math. Phys., 51 (2010). doi: 10.1063/1.3499403. Google Scholar

[7]

T. Daudé, N. Kamran and F. Nicoleau, Inverse scattering at fixed energy on asymptotically hyperbolic Liouville surfaces,, to appear in Inverse Problems, (). Google Scholar

[8]

T. Daudé and F. Nicoleau, Inverse scattering in (de Sitter)-Reissner-Nordström black hole spacetimes,, Rev. Math. Phys., 22 (2010), 431. doi: 10.1142/S0129055X10004004. Google Scholar

[9]

T. Daudé and F. Nicoleau, Inverse scattering at fixed energy in de Sitter-Reissner-Nordström black holes,, Annales Henri Poincaré, 12 (2011), 1. doi: 10.1007/s00023-010-0069-9. Google Scholar

[10]

G. Freiling and V. Yurko, Inverse problems for differential operators with singular boundary conditions,, Math. Nachr., 278 (2005), 1561. doi: 10.1002/mana.200410322. Google Scholar

[11]

F. Gesztesy and B. Simon, On local Borg-Marchenko uniqueness results,, Comm. Math. Phys., 211 (2005), 273. doi: 10.1007/s002200050812. Google Scholar

[12]

M. Horváth, Partial identification of the potential from phase shifts,, J. Math. Anal. Appl., 380 (2011), 726. doi: 10.1016/j.jmaa.2010.10.071. Google Scholar

[13]

H. Isozaki and J. Kurylev, Introduction to spectral theory and inverse problems on asymptotically hyperbolic manifolds,, MSJ Memoirs, (2014). doi: 10.1142/e040. Google Scholar

[14]

M. S. Joshi and A. Sá Barreto, Inverse scattering on asymptotically hyperbolic manifolds,, Acta Mathematica, 184 (2000), 41. doi: 10.1007/BF02392781. Google Scholar

[15]

K. Lake, Reissner-Nordström-de Sitter metric, the third law, and cosmic censorship,, Phys. Rev. D., 19 (1979), 421. doi: 10.1103/PhysRevD.19.421. Google Scholar

[16]

B. Y. Levin, Lectures on Entire Functions,, Translations of Mathematical Monograph, 150 (1996). Google Scholar

[17]

F. Melnik, Scattering on Reissner-Nordström metric for massive charged spin $\frac{1}{2}$ fields,, Annales Henri Poincaré, 4 (2003), 813. doi: 10.1007/s00023-003-0148-2. Google Scholar

[18]

J.-P. Nicolas, Scattering of linear Dirac fields by a spherically symmetric black hole,, Annales Institut Henri Poincaré, 62 (1995), 145. Google Scholar

[19]

A. G. Ramm, An Inverse Scattering Problem with part of the Fixed-Energy Phase shifts,, Comm. Math. Phys., 207 (1999), 231. doi: 10.1007/s002200050725. Google Scholar

[20]

T. Regge, Introduction to complex orbital momenta,, Nuevo Cimento, 14 (1959), 951. doi: 10.1007/BF02728177. Google Scholar

[21]

A. Sá Barreto, Radiation fields, scattering and inverse scattering on asymptotically hyperbolic manifolds,, Duke Math. Journal, 129 (2005), 407. doi: 10.1215/S0012-7094-05-12931-3. Google Scholar

[22]

W. Rudin, Real and Complex Analysis, Third edition,, McGraw-Hill Book Company, (1987). Google Scholar

[23]

B. Simon, A new approach to inverse spectral theory, I. fundamental formalism,, Annals of Math., 150 (1999), 1029. doi: 10.2307/121061. Google Scholar

[24]

G. Teschl, Mathematical Methods in Quantum Mechanics,, Graduate Studies in Mathematics, 99 (2009). doi: 10.1090/gsm/099. Google Scholar

[25]

B. Thaller, The Dirac Equation,, Texts and Monographs in Physics, (1992). doi: 10.1007/978-3-662-02753-0. Google Scholar

[26]

R. M. Wald, General Relativity,, The University of Chicago Press, (1984). doi: 10.7208/chicago/9780226870373.001.0001. Google Scholar

[1]

A. Carati. On the existence of scattering solutions for the Abraham-Lorentz-Dirac equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 471-480. doi: 10.3934/dcdsb.2006.6.471

[2]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems & Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[3]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[4]

Masaya Maeda, Hironobu Sasaki, Etsuo Segawa, Akito Suzuki, Kanako Suzuki. Scattering and inverse scattering for nonlinear quantum walks. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3687-3703. doi: 10.3934/dcds.2018159

[5]

Francesco Demontis, Cornelis Van der Mee. Novel formulation of inverse scattering and characterization of scattering data. Conference Publications, 2011, 2011 (Special) : 343-350. doi: 10.3934/proc.2011.2011.343

[6]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[7]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems & Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

[8]

Leonardo Marazzi. Inverse scattering on conformally compact manifolds. Inverse Problems & Imaging, 2009, 3 (3) : 537-550. doi: 10.3934/ipi.2009.3.537

[9]

Rodrigue Gnitchogna Batogna, Abdon Atangana. Generalised class of Time Fractional Black Scholes equation and numerical analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 435-445. doi: 10.3934/dcdss.2019028

[10]

Changhun Yang. Scattering results for Dirac Hartree-type equations with small initial data. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1711-1734. doi: 10.3934/cpaa.2019081

[11]

M. M. Cavalcanti, V.N. Domingos Cavalcanti, D. Andrade, T. F. Ma. Homogenization for a nonlinear wave equation in domains with holes of small capacity. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 721-743. doi: 10.3934/dcds.2006.16.721

[12]

Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems & Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793

[13]

Fenglong Qu, Jiaqing Yang. On recovery of an inhomogeneous cavity in inverse acoustic scattering. Inverse Problems & Imaging, 2018, 12 (2) : 281-291. doi: 10.3934/ipi.2018012

[14]

Peter Monk, Jiguang Sun. Inverse scattering using finite elements and gap reciprocity. Inverse Problems & Imaging, 2007, 1 (4) : 643-660. doi: 10.3934/ipi.2007.1.643

[15]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[16]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[17]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[18]

Miklós Horváth. Spectral shift functions in the fixed energy inverse scattering. Inverse Problems & Imaging, 2011, 5 (4) : 843-858. doi: 10.3934/ipi.2011.5.843

[19]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems & Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[20]

Masaru Ikehata, Esa Niemi, Samuli Siltanen. Inverse obstacle scattering with limited-aperture data. Inverse Problems & Imaging, 2012, 6 (1) : 77-94. doi: 10.3934/ipi.2012.6.77

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

[Back to Top]