• Previous Article
    Local inverse scattering at fixed energy in spherically symmetric asymptotically hyperbolic manifolds
  • IPI Home
  • This Issue
  • Next Article
    Solving monotone inclusions involving parallel sums of linearly composed maximally monotone operators
August  2016, 10(3): 641-658. doi: 10.3934/ipi.2016015

The inverse problem for electroseismic conversion: Stable recovery of the conductivity and the electrokinetic mobility parameter

1. 

8817 234th St. SW, Edmonds, WA 98026, United States

2. 

Computational and Applied Mathematics, Rice University, Houston, TX 77005, United States

Received  May 2015 Revised  May 2016 Published  August 2016

Pride (1994, Phys. Rev. B 50 15678-96) derived the governing model of electroseismic conversion, in which Maxwell's equations are coupled with Biot's equations through an electrokinetic mobility parameter. The inverse problem of electroseismic conversion was first studied by Chen and Yang (2013, Inverse Problem 29 115006). By following the construction of Complex Geometrical Optics (CGO) solutions to a matrix Schrödinger equation introduced by Ola and Somersalo (1996, SIAM J. Appl. Math. 56 No. 4 1129-1145), we analyze the recovering of conductivity, permittivity and the electrokinetic mobility parameter in Maxwell's equations with internal measurements, while allowing the magnetic permeability $\mu$ to be a variable function. We show that knowledge of two internal data sets associated with well-chosen boundary electrical sources uniquely determines these parameters. Moreover, a Lipschitz-type stability is obtained based on the same set.
Citation: Jie Chen, Maarten de Hoop. The inverse problem for electroseismic conversion: Stable recovery of the conductivity and the electrokinetic mobility parameter. Inverse Problems & Imaging, 2016, 10 (3) : 641-658. doi: 10.3934/ipi.2016015
References:
[1]

G. Bal and G. Uhlmann, Inverse diffusion theory of photo-acoustics,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/8/085010. Google Scholar

[2]

G. Bal and T. Zhou, Hybrid inverse problems for a system of Maxwell's equations,, Inverse Problem, 30 (2014). doi: 10.1088/0266-5611/30/5/055013. Google Scholar

[3]

M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. I-Low-frequency range,, Journal of the Acoustical Society of America, 28 (1956), 168. doi: 10.1121/1.1908239. Google Scholar

[4]

M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. II-High-frequency range,, Journal of the Acoustical Society of America, 28 (1956), 179. doi: 10.1121/1.1908241. Google Scholar

[5]

P. Caro, P. Ola and M. Salo, Inverse boundary value problem for Maxwell equations with local data,, Comm. in PDE, 34 (2009), 1425. doi: 10.1080/03605300903296272. Google Scholar

[6]

J. Chen and Y. Yang, Quantitative photo-acoustic tomography with partial data,, Inverse Problem, 28 (2012). doi: 10.1088/0266-5611/28/11/115014. Google Scholar

[7]

J. Chen and Y. Yang, Inverse problem of electroseismic conversion,, Inverse Problem, 29 (2013). Google Scholar

[8]

D. Colton and L. Paivarinta, The uniqueness of a solution to an inverse scattering problem for electromagnetic waves,, Arch. Rational Mech. Anal., 119 (1992), 59. doi: 10.1007/BF00376010. Google Scholar

[9]

C. Guo and G. Bal, Reconstruction of complex-valued tensors in the Maxwell system from knowledge of internal magnetic fields,, Inverse Problems and Imaging, 8 (2014), 1033. doi: 10.3934/ipi.2014.8.1033. Google Scholar

[10]

M. W. Haartsen, Coupled Electromagnetic and Acoustic Wavefield Modeling in Poro-Elastic Media and Its Application in Geophysical Exploration,, Ph.D. Thesis, (1995). Google Scholar

[11]

C. E. Kenig, M. Salo and G. Uhlmann, Inverse problems for the anisotropic maxwell equations,, Duke Math. J., 157 (2011), 369. doi: 10.1215/00127094-1272903. Google Scholar

[12]

P. Ola and E. Somersalo, Electromagnetic inverse problems and generalized sommerfeld potentials,, SIAM J. Appl. Math., 56 (1996), 1129. doi: 10.1137/S0036139995283948. Google Scholar

[13]

P. Ola, L. Päivärinta and E Somersalo, An inverse boundary value problem in electrodynamics,, Duke Mathematical Journal, 70 (1993), 617. doi: 10.1215/S0012-7094-93-07014-7. Google Scholar

[14]

T. Plona, Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies,, Appl. Phys. Lett., 36 (1980), 259. doi: 10.1063/1.91445. Google Scholar

[15]

S. R. Pride, Governing equations for the coupled electro-magnetics and acoustics of porous media,, Phys. Rev., 50 (1994), 15678. Google Scholar

[16]

S. R. Pride and M. W. Haartsen, Electroseismic wave properties,, Journal of the Acoustical Society of America, 100 (1996), 1301. doi: 10.1121/1.416018. Google Scholar

[17]

M. D. Schakel, Coupled Seismic and Electromagnetic Wave Propagation,, Ph.D. thesis, (2011). Google Scholar

[18]

A. Thompson and G. Gist, Geophysical applications of electro-kinetic conversion,, The Leading Edge, 12 (1993), 1169. Google Scholar

[19]

A. Thompson and S. Hornbostel et. al., Field tests of electroseismic hydrocarbon detection,, Geophysics, 72 (2007). Google Scholar

[20]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153. doi: 10.2307/1971291. Google Scholar

[21]

B. White, Asymptotic theory of electro-seismic prospecting,, SIAM J. Appl. Math., 65 (2005), 1443. doi: 10.1137/040604108. Google Scholar

[22]

K. L. Williams, An effective density fluid model for acoustic propagation in sediments derived from Biot theory,, J. Acoust. Soc. Am., 110 (2001), 2276. doi: 10.1121/1.1412449. Google Scholar

[23]

Z. Zhu, M. W. Haartsen and M. N. Toksöz, Experimental studies of electro-kinetic conversions in fluid-saturated bore-hole models,, Geophysics, 64 (1999), 1349. Google Scholar

[24]

Z. Zhu and M. N. Toksöz, Cross hole seismoelectric measurements in bore-hole models with fractures,, Geophysics, 68 (2003), 1519. Google Scholar

[25]

Z. Zhu and M. N. Toksöz, Seismoelectric and seismomagnetic measurements in fractured bore-hole models,, Geophysics, 70 (2005). Google Scholar

show all references

References:
[1]

G. Bal and G. Uhlmann, Inverse diffusion theory of photo-acoustics,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/8/085010. Google Scholar

[2]

G. Bal and T. Zhou, Hybrid inverse problems for a system of Maxwell's equations,, Inverse Problem, 30 (2014). doi: 10.1088/0266-5611/30/5/055013. Google Scholar

[3]

M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. I-Low-frequency range,, Journal of the Acoustical Society of America, 28 (1956), 168. doi: 10.1121/1.1908239. Google Scholar

[4]

M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. II-High-frequency range,, Journal of the Acoustical Society of America, 28 (1956), 179. doi: 10.1121/1.1908241. Google Scholar

[5]

P. Caro, P. Ola and M. Salo, Inverse boundary value problem for Maxwell equations with local data,, Comm. in PDE, 34 (2009), 1425. doi: 10.1080/03605300903296272. Google Scholar

[6]

J. Chen and Y. Yang, Quantitative photo-acoustic tomography with partial data,, Inverse Problem, 28 (2012). doi: 10.1088/0266-5611/28/11/115014. Google Scholar

[7]

J. Chen and Y. Yang, Inverse problem of electroseismic conversion,, Inverse Problem, 29 (2013). Google Scholar

[8]

D. Colton and L. Paivarinta, The uniqueness of a solution to an inverse scattering problem for electromagnetic waves,, Arch. Rational Mech. Anal., 119 (1992), 59. doi: 10.1007/BF00376010. Google Scholar

[9]

C. Guo and G. Bal, Reconstruction of complex-valued tensors in the Maxwell system from knowledge of internal magnetic fields,, Inverse Problems and Imaging, 8 (2014), 1033. doi: 10.3934/ipi.2014.8.1033. Google Scholar

[10]

M. W. Haartsen, Coupled Electromagnetic and Acoustic Wavefield Modeling in Poro-Elastic Media and Its Application in Geophysical Exploration,, Ph.D. Thesis, (1995). Google Scholar

[11]

C. E. Kenig, M. Salo and G. Uhlmann, Inverse problems for the anisotropic maxwell equations,, Duke Math. J., 157 (2011), 369. doi: 10.1215/00127094-1272903. Google Scholar

[12]

P. Ola and E. Somersalo, Electromagnetic inverse problems and generalized sommerfeld potentials,, SIAM J. Appl. Math., 56 (1996), 1129. doi: 10.1137/S0036139995283948. Google Scholar

[13]

P. Ola, L. Päivärinta and E Somersalo, An inverse boundary value problem in electrodynamics,, Duke Mathematical Journal, 70 (1993), 617. doi: 10.1215/S0012-7094-93-07014-7. Google Scholar

[14]

T. Plona, Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies,, Appl. Phys. Lett., 36 (1980), 259. doi: 10.1063/1.91445. Google Scholar

[15]

S. R. Pride, Governing equations for the coupled electro-magnetics and acoustics of porous media,, Phys. Rev., 50 (1994), 15678. Google Scholar

[16]

S. R. Pride and M. W. Haartsen, Electroseismic wave properties,, Journal of the Acoustical Society of America, 100 (1996), 1301. doi: 10.1121/1.416018. Google Scholar

[17]

M. D. Schakel, Coupled Seismic and Electromagnetic Wave Propagation,, Ph.D. thesis, (2011). Google Scholar

[18]

A. Thompson and G. Gist, Geophysical applications of electro-kinetic conversion,, The Leading Edge, 12 (1993), 1169. Google Scholar

[19]

A. Thompson and S. Hornbostel et. al., Field tests of electroseismic hydrocarbon detection,, Geophysics, 72 (2007). Google Scholar

[20]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153. doi: 10.2307/1971291. Google Scholar

[21]

B. White, Asymptotic theory of electro-seismic prospecting,, SIAM J. Appl. Math., 65 (2005), 1443. doi: 10.1137/040604108. Google Scholar

[22]

K. L. Williams, An effective density fluid model for acoustic propagation in sediments derived from Biot theory,, J. Acoust. Soc. Am., 110 (2001), 2276. doi: 10.1121/1.1412449. Google Scholar

[23]

Z. Zhu, M. W. Haartsen and M. N. Toksöz, Experimental studies of electro-kinetic conversions in fluid-saturated bore-hole models,, Geophysics, 64 (1999), 1349. Google Scholar

[24]

Z. Zhu and M. N. Toksöz, Cross hole seismoelectric measurements in bore-hole models with fractures,, Geophysics, 68 (2003), 1519. Google Scholar

[25]

Z. Zhu and M. N. Toksöz, Seismoelectric and seismomagnetic measurements in fractured bore-hole models,, Geophysics, 70 (2005). Google Scholar

[1]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems & Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

[2]

Dirk Pauly. On Maxwell's and Poincaré's constants. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 607-618. doi: 10.3934/dcdss.2015.8.607

[3]

Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032

[4]

Yuri Kalinin, Volker Reitmann, Nayil Yumaguzin. Asymptotic behavior of Maxwell's equation in one-space dimension with thermal effect. Conference Publications, 2011, 2011 (Special) : 754-762. doi: 10.3934/proc.2011.2011.754

[5]

J. J. Morgan, Hong-Ming Yin. On Maxwell's system with a thermal effect. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 485-494. doi: 10.3934/dcdsb.2001.1.485

[6]

Hongbin Chen, Yi Li. Existence, uniqueness, and stability of periodic solutions of an equation of duffing type. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 793-807. doi: 10.3934/dcds.2007.18.793

[7]

W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431

[8]

Jiann-Sheng Jiang, Chi-Kun Lin, Chi-Hua Liu. Homogenization of the Maxwell's system for conducting media. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 91-107. doi: 10.3934/dcdsb.2008.10.91

[9]

Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 257-272. doi: 10.3934/dcdsb.2006.6.257

[10]

Matthias Eller. Stability of the anisotropic Maxwell equations with a conductivity term. Evolution Equations & Control Theory, 2019, 8 (2) : 343-357. doi: 10.3934/eect.2019018

[11]

Daniele Garrisi, Vladimir Georgiev. Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4309-4328. doi: 10.3934/dcds.2017184

[12]

Khalid Latrach, Hatem Megdiche. Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 305-321. doi: 10.3934/dcds.2011.29.305

[13]

M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473

[14]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems & Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117

[15]

B. L. G. Jonsson. Wave splitting of Maxwell's equations with anisotropic heterogeneous constitutive relations. Inverse Problems & Imaging, 2009, 3 (3) : 405-452. doi: 10.3934/ipi.2009.3.405

[16]

Cleverson R. da Luz, Gustavo Alberto Perla Menzala. Uniform stabilization of anisotropic Maxwell's equations with boundary dissipation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 547-558. doi: 10.3934/dcdss.2009.2.547

[17]

Gang Bao, Bin Hu, Peijun Li, Jue Wang. Analysis of time-domain Maxwell's equations in biperiodic structures. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 259-286. doi: 10.3934/dcdsb.2019181

[18]

Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations & Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365

[19]

Kim Dang Phung. Energy decay for Maxwell's equations with Ohm's law in partially cubic domains. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2229-2266. doi: 10.3934/cpaa.2013.12.2229

[20]

Shijin Deng, Linglong Du, Shih-Hsien Yu. Nonlinear stability of Broadwell model with Maxwell diffuse boundary condition. Kinetic & Related Models, 2013, 6 (4) : 865-882. doi: 10.3934/krm.2013.6.865

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]