• Previous Article
    Factorization method in inverse interaction problems with bi-periodic interfaces between acoustic and elastic waves
  • IPI Home
  • This Issue
  • Next Article
    A divide-alternate-and-conquer approach for localization and shape identification of multiple scatterers in heterogeneous media using dynamic XFEM
February  2016, 10(1): 131-163. doi: 10.3934/ipi.2016.10.131

The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain

1. 

Laboratory of Mathematics, Institute of Engineering, Hiroshima University, Higashi Hiroshima 739-8527

Received  October 2014 Revised  July 2015 Published  February 2016

In this paper, a time domain enclosure method for an inverse obstacle scattering problem of electromagnetic wave is introduced. The wave as a solution of Maxwell's equations is generated by an applied volumetric current having an orientation and supported outside an unknown obstacle and observed on the same support over a finite time interval. It is assumed that the obstacle is a perfect conductor. Two types of analytical formulae which employ a single observed wave and explicitly contain information about the geometry of the obstacle are given. In particular, an effect of the orientation of the current is catched in one of two formulae. Two corollaries concerning with the detection of the points on the surface of the obstacle nearest to the centre of the current support and curvatures at the points are also given.
Citation: Masaru Ikehata. The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain. Inverse Problems & Imaging, 2016, 10 (1) : 131-163. doi: 10.3934/ipi.2016.10.131
References:
[1]

H. Ammari, G. Bao and J. L. Fleming, An inverse source problem for Maxwell's equations in magnetoencephalography,, SIAM J. Appl. Math., 62 (2002), 1369. doi: 10.1137/S0036139900373927. Google Scholar

[2]

H. Ammari, C. Latiri-Grouz and J.-C. Nédélec, The Leontovich boundary value problem for the time-harmonic Maxwell equations,, Asymptotic Analysis, 18 (1998), 33. Google Scholar

[3]

C. Athanasiadis, P. A. Martin and I. G. Stratis, On the scattering of point-generated electromagnetic waves by a perfectly conducting sphere, and related near-field inverse problems, Short Communication,, ZAMM$\cdot$Z. Angew. Math. Mech. 83 (2003), 83 (2003), 129. doi: 10.1002/zamm.200310012. Google Scholar

[4]

C. A. Balanis, Antenna Theory, Analysis and Design,, $3^{rd}$ edition, (2005). Google Scholar

[5]

N. Bleistein and R. A. Handelsman, Asymptotic Expansions of Integrals,, $2^{nd}$ edition, (1986). Google Scholar

[6]

R. J. Burkholder, I. J. Gupta and J. T. Johnson, Comparison of monostatic and bistatic radar images,, IEEE Antennas and Propagation Magazine, 45 (2003), 41. Google Scholar

[7]

M. Cheney and B. Borden, Fundamentals of Radar Imaging,, CBMS-NSF, (2009). doi: 10.1137/1.9780898719291. Google Scholar

[8]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, $3^{rd}$ edition, (2013). doi: 10.1007/978-1-4614-4942-3. Google Scholar

[9]

R. Courant and D. Hilbert, Methoden der Mathematischen Physik,, Vol. 2, (1937). Google Scholar

[10]

R. Dautray and J.-L. Lions., Mathematical Analysis and Numerical Methods for Sciences and Technology, Spectral Theory and Applications,, Vol. 3, (1990). Google Scholar

[11]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Sciences and Technology,, Vol. 5, (1992). doi: 10.1007/978-3-642-58090-1. Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Reprint of the 1998 ed., (1998). Google Scholar

[13]

M. Ikehata, Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data,, Inverse Problems, 15 (1999), 1231. doi: 10.1088/0266-5611/15/5/308. Google Scholar

[14]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/5/055010. Google Scholar

[15]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval: II. Obstacles with a dissipative boundary or finite refractive index and back-scattering data,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/4/045010. Google Scholar

[16]

M. Ikehata, An inverse acoustic scattering problem inside a cavity with dynamical back-scattering data,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/9/095016. Google Scholar

[17]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval: III. Sound-soft obstacle and bistatic data,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/8/085013. Google Scholar

[18]

M. Ikehata, Extracting the geometry of an obstacle and a zeroth-order coefficient of a boundary condition via the enclosure method using a single reflected wave over a finite time interval,, Inverse Problems, 30 (2014). doi: 10.1088/0266-5611/30/4/045011. Google Scholar

[19]

M. Ikehata and H. Itou, On reconstruction of a cavity in a linearized viscoelastic body from infinitely many transient boundary data,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/12/125003. Google Scholar

[20]

M. Ikehata and M. Kawashita, On the reconstruction of inclusions in a heat conductive body from dynamical boundary data over a finite time interval,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/9/095004. Google Scholar

[21]

V. Isakov, Inverse obstacle problems,, Topical review, 25 (2009). doi: 10.1088/0266-5611/25/12/123002. Google Scholar

[22]

P. D. Lax and R. S. Phillips, The scattering of sound waves by an obstacle,, Comm. Pure and Appl. Math., 30 (1977), 195. doi: 10.1002/cpa.3160300204. Google Scholar

[23]

H. Liu, M. Yamamoto and J. Zou, Reflection principle for the Maxwell equations and its application to inverse electromagnetic scattering,, Inverse Problems, 23 (2007), 2357. doi: 10.1088/0266-5611/23/6/005. Google Scholar

[24]

A. Majda and M. Taylor, Inverse scattering problems for transparent obstacles, electromagnetic waves, and hyperbolic systems,, Comm. in Partial Differential Equations, 2 (1977), 395. doi: 10.1080/03605307708820035. Google Scholar

[25]

J.-C. Nédélec, Acoustic and Electromagnetic Equations, Integral Representations for Harmonic Problems,, Springer, (2001). doi: 10.1007/978-1-4757-4393-7. Google Scholar

[26]

B. O'Neill, Elementary Differential Geometry,, Revised, (2006). Google Scholar

show all references

References:
[1]

H. Ammari, G. Bao and J. L. Fleming, An inverse source problem for Maxwell's equations in magnetoencephalography,, SIAM J. Appl. Math., 62 (2002), 1369. doi: 10.1137/S0036139900373927. Google Scholar

[2]

H. Ammari, C. Latiri-Grouz and J.-C. Nédélec, The Leontovich boundary value problem for the time-harmonic Maxwell equations,, Asymptotic Analysis, 18 (1998), 33. Google Scholar

[3]

C. Athanasiadis, P. A. Martin and I. G. Stratis, On the scattering of point-generated electromagnetic waves by a perfectly conducting sphere, and related near-field inverse problems, Short Communication,, ZAMM$\cdot$Z. Angew. Math. Mech. 83 (2003), 83 (2003), 129. doi: 10.1002/zamm.200310012. Google Scholar

[4]

C. A. Balanis, Antenna Theory, Analysis and Design,, $3^{rd}$ edition, (2005). Google Scholar

[5]

N. Bleistein and R. A. Handelsman, Asymptotic Expansions of Integrals,, $2^{nd}$ edition, (1986). Google Scholar

[6]

R. J. Burkholder, I. J. Gupta and J. T. Johnson, Comparison of monostatic and bistatic radar images,, IEEE Antennas and Propagation Magazine, 45 (2003), 41. Google Scholar

[7]

M. Cheney and B. Borden, Fundamentals of Radar Imaging,, CBMS-NSF, (2009). doi: 10.1137/1.9780898719291. Google Scholar

[8]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, $3^{rd}$ edition, (2013). doi: 10.1007/978-1-4614-4942-3. Google Scholar

[9]

R. Courant and D. Hilbert, Methoden der Mathematischen Physik,, Vol. 2, (1937). Google Scholar

[10]

R. Dautray and J.-L. Lions., Mathematical Analysis and Numerical Methods for Sciences and Technology, Spectral Theory and Applications,, Vol. 3, (1990). Google Scholar

[11]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Sciences and Technology,, Vol. 5, (1992). doi: 10.1007/978-3-642-58090-1. Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Reprint of the 1998 ed., (1998). Google Scholar

[13]

M. Ikehata, Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data,, Inverse Problems, 15 (1999), 1231. doi: 10.1088/0266-5611/15/5/308. Google Scholar

[14]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/5/055010. Google Scholar

[15]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval: II. Obstacles with a dissipative boundary or finite refractive index and back-scattering data,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/4/045010. Google Scholar

[16]

M. Ikehata, An inverse acoustic scattering problem inside a cavity with dynamical back-scattering data,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/9/095016. Google Scholar

[17]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval: III. Sound-soft obstacle and bistatic data,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/8/085013. Google Scholar

[18]

M. Ikehata, Extracting the geometry of an obstacle and a zeroth-order coefficient of a boundary condition via the enclosure method using a single reflected wave over a finite time interval,, Inverse Problems, 30 (2014). doi: 10.1088/0266-5611/30/4/045011. Google Scholar

[19]

M. Ikehata and H. Itou, On reconstruction of a cavity in a linearized viscoelastic body from infinitely many transient boundary data,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/12/125003. Google Scholar

[20]

M. Ikehata and M. Kawashita, On the reconstruction of inclusions in a heat conductive body from dynamical boundary data over a finite time interval,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/9/095004. Google Scholar

[21]

V. Isakov, Inverse obstacle problems,, Topical review, 25 (2009). doi: 10.1088/0266-5611/25/12/123002. Google Scholar

[22]

P. D. Lax and R. S. Phillips, The scattering of sound waves by an obstacle,, Comm. Pure and Appl. Math., 30 (1977), 195. doi: 10.1002/cpa.3160300204. Google Scholar

[23]

H. Liu, M. Yamamoto and J. Zou, Reflection principle for the Maxwell equations and its application to inverse electromagnetic scattering,, Inverse Problems, 23 (2007), 2357. doi: 10.1088/0266-5611/23/6/005. Google Scholar

[24]

A. Majda and M. Taylor, Inverse scattering problems for transparent obstacles, electromagnetic waves, and hyperbolic systems,, Comm. in Partial Differential Equations, 2 (1977), 395. doi: 10.1080/03605307708820035. Google Scholar

[25]

J.-C. Nédélec, Acoustic and Electromagnetic Equations, Integral Representations for Harmonic Problems,, Springer, (2001). doi: 10.1007/978-1-4757-4393-7. Google Scholar

[26]

B. O'Neill, Elementary Differential Geometry,, Revised, (2006). Google Scholar

[1]

Masaru Ikehata, Mishio Kawashita, Wakako Kawashita. On finding a buried obstacle in a layered medium via the time domain enclosure method in the case of possible total reflection phenomena. Inverse Problems & Imaging, 2019, 13 (5) : 959-981. doi: 10.3934/ipi.2019043

[2]

Masaru Ikehata, Esa Niemi, Samuli Siltanen. Inverse obstacle scattering with limited-aperture data. Inverse Problems & Imaging, 2012, 6 (1) : 77-94. doi: 10.3934/ipi.2012.6.77

[3]

Peijun Li, Xiaokai Yuan. Inverse obstacle scattering for elastic waves in three dimensions. Inverse Problems & Imaging, 2019, 13 (3) : 545-573. doi: 10.3934/ipi.2019026

[4]

Masaru Ikehata. On finding an obstacle with the Leontovich boundary condition via the time domain enclosure method. Inverse Problems & Imaging, 2017, 11 (1) : 99-123. doi: 10.3934/ipi.2017006

[5]

Masaru Ikehata, Mishio Kawashita. On finding a buried obstacle in a layered medium via the time domain enclosure method. Inverse Problems & Imaging, 2018, 12 (5) : 1173-1198. doi: 10.3934/ipi.2018049

[6]

Masaru Ikehata. On finding the surface admittance of an obstacle via the time domain enclosure method. Inverse Problems & Imaging, 2019, 13 (2) : 263-284. doi: 10.3934/ipi.2019014

[7]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[8]

Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems & Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211

[9]

Mourad Sini, Nguyen Trung Thành. Inverse acoustic obstacle scattering problems using multifrequency measurements. Inverse Problems & Imaging, 2012, 6 (4) : 749-773. doi: 10.3934/ipi.2012.6.749

[10]

Ting Zhou. Reconstructing electromagnetic obstacles by the enclosure method. Inverse Problems & Imaging, 2010, 4 (3) : 547-569. doi: 10.3934/ipi.2010.4.547

[11]

Laurent Bourgeois, Dmitry Ponomarev, Jérémi Dardé. An inverse obstacle problem for the wave equation in a finite time domain. Inverse Problems & Imaging, 2019, 13 (2) : 377-400. doi: 10.3934/ipi.2019019

[12]

T. J. Christiansen. Resonances and balls in obstacle scattering with Neumann boundary conditions. Inverse Problems & Imaging, 2008, 2 (3) : 335-340. doi: 10.3934/ipi.2008.2.335

[13]

William Rundell. Recovering an obstacle using integral equations. Inverse Problems & Imaging, 2009, 3 (2) : 319-332. doi: 10.3934/ipi.2009.3.319

[14]

B. L. G. Jonsson. Wave splitting of Maxwell's equations with anisotropic heterogeneous constitutive relations. Inverse Problems & Imaging, 2009, 3 (3) : 405-452. doi: 10.3934/ipi.2009.3.405

[15]

Christodoulos E. Athanasiadis, Vassilios Sevroglou, Konstantinos I. Skourogiannis. The inverse electromagnetic scattering problem by a mixed impedance screen in chiral media. Inverse Problems & Imaging, 2015, 9 (4) : 951-970. doi: 10.3934/ipi.2015.9.951

[16]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems & Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

[17]

Laurent Bourgeois, Jérémi Dardé. A quasi-reversibility approach to solve the inverse obstacle problem. Inverse Problems & Imaging, 2010, 4 (3) : 351-377. doi: 10.3934/ipi.2010.4.351

[18]

Laurent Bourgeois, Jérémi Dardé. The "exterior approach" to solve the inverse obstacle problem for the Stokes system. Inverse Problems & Imaging, 2014, 8 (1) : 23-51. doi: 10.3934/ipi.2014.8.23

[19]

Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems & Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139

[20]

Hélène Hibon, Ying Hu, Yiqing Lin, Peng Luo, Falei Wang. Quadratic BSDEs with mean reflection. Mathematical Control & Related Fields, 2018, 8 (3&4) : 721-738. doi: 10.3934/mcrf.2018031

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]