May  2015, 9(2): 301-315. doi: 10.3934/ipi.2015.9.301

A control approach to recover the wave speed (conformal factor) from one measurement

1. 

Department of Pediatrics - Cardiology, Baylor College of Medicine, Houston, TX

Received  January 2014 Revised  January 2015 Published  March 2015

In this paper we consider the problem of recovering the conformal factor in a conformal class of Riemannian metrics from the boundary measurement of one wave field. More precisely, using boundary control operators, we derive an explicit equation satisfied by the contrast between two conformal factors (or wave speeds). This equation is Fredholm and generically invertible provided that the domain of interest is properly illuminated at an initial time. We also show locally Lipschitz stability estimates.
Citation: Sebastian Acosta. A control approach to recover the wave speed (conformal factor) from one measurement. Inverse Problems & Imaging, 2015, 9 (2) : 301-315. doi: 10.3934/ipi.2015.9.301
References:
[1]

G. Bal and G. Uhlmann, Inverse diffusion theory of photoacoustics,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/8/085010.

[2]

C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport,, Ann. Sci. École Norm. Sup., 3 (1970), 185.

[3]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024. doi: 10.1137/0330055.

[4]

M. I. Belishev, Boundary control in reconstruction of manifolds and metrics (the BC method),, Inverse Problems, 13 (1997). doi: 10.1088/0266-5611/13/5/002.

[5]

M. I. Belishev, Recent progress in the boundary control method,, Inverse Problems, 23 (2007). doi: 10.1088/0266-5611/23/5/R01.

[6]

M. Bellassoued and D. Dos Santos Ferreira, Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map,, Inverse Probl. Imaging, 5 (2011), 745. doi: 10.3934/ipi.2011.5.745.

[7]

M. Bellassoued and M. Yamamoto, Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation,, J. Math. Pures Appl. (9), 85 (2006), 193. doi: 10.1016/j.matpur.2005.02.004.

[8]

M. Bellassoued and M. Yamamoto, Determination of a coefficient in the wave equation with a single measurement,, Appl. Anal., 87 (2008), 901. doi: 10.1080/00036810802369249.

[9]

K. D. Blazek, C. Stolk and W. W. Symes, A mathematical framework for inverse wave problems in heterogeneous media,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/6/065001.

[10]

A. L. Bukhgeĭm and M. V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems,, Dokl. Akad. Nauk SSSR, 260 (1981), 269.

[11]

N. Burq, Contrôlabilité exacte des ondes dans des ouverts peu réguliers,, Asymptot. Anal., 14 (1997), 157.

[12]

J. Chen and Y. Yang, Quantitative photo-acoustic tomography with partial data,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/11/115014.

[13]

J. Chen and Y. Yang, Inverse problem of electro-seismic conversion,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/11/115006.

[14]

C. B. Croke, I. Lasiecka, G. Uhlmann and M. S. Vogelius (eds.), Geometric Methods in Inverse Problems and PDE Control,, The IMA Volumes in Mathematics and its Applications, (2004). doi: 10.1007/978-1-4684-9375-7.

[15]

K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations,, With contributions by S. Brendle, (2000).

[16]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (1998).

[17]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Reprint of the 1998 edition, (1998).

[18]

R. Glowinski, J.-L. Lions and J. He, Exact and Approximate Controllability for Distributed Parameter Systems. A Numerical Approach,, Encyclopedia of Mathematics and its Applications, (2008). doi: 10.1017/CBO9780511721595.

[19]

O. Y. Imanuvilov and M. Yamamoto, Global uniqueness and stability in determining coefficients of wave equations,, Comm. Partial Differential Equations, 26 (2001), 1409. doi: 10.1081/PDE-100106139.

[20]

O. Y. Imanuvilov and M. Yamamoto, Determination of a coefficient in an acoustic equation with a single measurement,, Inverse Problems, 19 (2003), 157. doi: 10.1088/0266-5611/19/1/309.

[21]

V. Isakov, Inverse Problems for Partial Differential Equations,, 2nd edition, (2006).

[22]

D. Jerison and C. E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains,, J. Funct. Anal., 130 (1995), 161. doi: 10.1006/jfan.1995.1067.

[23]

T. Kato, Perturbation Theory for Linear Operators,, Reprint of the 1980 edition, (1980).

[24]

M. V. Klibanov, Inverse problems and Carleman estimates,, Inverse Problems, 8 (1992), 575. doi: 10.1088/0266-5611/8/4/009.

[25]

M. V. Klibanov and M. Yamamoto, Lipschitz stability of an inverse problem for an acoustic equation,, Appl. Anal., 85 (2006), 515. doi: 10.1080/00036810500474788.

[26]

I. Lasiecka, J.-L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl. (9), 65 (1986), 149.

[27]

J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems,, SIAM Rev., 30 (1988), 1. doi: 10.1137/1030001.

[28]

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I-II,, Translated from the French by P. Kenneth, (1972).

[29]

S. Liu and L. Oksanen, A Lipschitz stable reconstruction formula for the inverse problem for the wave equation,, Accepted in Trans. Amer. Math. Soc., ().

[30]

S. Liu, Recovery of the sound speed and initial displacement for the wave equation by means of a single Dirichlet boundary measurement,, Evol. Equ. Control Theory, 2 (2013), 355. doi: 10.3934/eect.2013.2.355.

[31]

S. Liu and R. Triggiani, Global uniqueness and stability in determining the damping coefficient of an inverse hyperbolic problem with nonhomogeneous Neumann B.C. through an additional Dirichlet boundary trace,, SIAM J. Math. Anal., 43 (2011), 1631. doi: 10.1137/100808988.

[32]

S. Liu and R. Triggiani, Global uniqueness and stability in determining the damping coefficient of an inverse hyperbolic problem with non-homogeneous Dirichlet B.C. through an additional localized Neumann boundary trace,, Appl. Anal., 91 (2012), 1551. doi: 10.1080/00036811.2011.618125.

[33]

S. Liu and R. Triggiani, Recovering damping and potential coefficients for an inverse non-homogeneous second-order hyperbolic problem via a localized Neumann boundary trace,, Discrete Contin. Dyn. Syst., 33 (2013), 5217. doi: 10.3934/dcds.2013.33.5217.

[34]

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations,, Cambridge University Press, (2000).

[35]

J.-P. Puel and M. Yamamoto, Generic well-posedness in a multidimensional hyperbolic inverse problem,, J. Inverse Ill-Posed Probl., 5 (1997), 55. doi: 10.1515/jiip.1997.5.1.55.

[36]

J.-P. Puel and M. Yamamoto, On a global estimate in a linear inverse hyperbolic problem,, Inverse Problems, 12 (1996), 995. doi: 10.1088/0266-5611/12/6/013.

[37]

Rakesh and W. W. Symes, Uniqueness for an inverse problem for the wave equation,, Comm. Partial Differential Equations, 13 (1988), 87. doi: 10.1080/03605308808820539.

[38]

M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations,, 2nd edition, (2004).

[39]

P. Stefanov and G. Uhlmann, Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media,, J. Funct. Anal., 154 (1998), 330. doi: 10.1006/jfan.1997.3188.

[40]

P. Stefanov and G. Uhlmann, Stable determination of generic simple metrics from the hyperbolic Dirichlet-to-Neumann map,, Int. Math. Res. Not., (2005), 1047. doi: 10.1155/IMRN.2005.1047.

[41]

P. Stefanov and G. Uhlmann, Recovery of a source term or a speed with one measurement and applications,, Trans. Amer. Math. Soc., 365 (2013), 5737. doi: 10.1090/S0002-9947-2013-05703-0.

[42]

Z. Q. Sun, On continuous dependence for an inverse initial-boundary value problem for the wave equation,, J. Math. Anal. Appl., 150 (1990), 188. doi: 10.1016/0022-247X(90)90207-V.

[43]

J. Sylvester and G. Uhlmann, Inverse problems in anisotropic media,, in Inverse Scattering and Applications (Amherst, (1990), 105. doi: 10.1090/conm/122/1135861.

[44]

G. Uhlmann, Inverse scattering in anisotropic media,, in Surveys on Solution Methods for Inverse Problems, (2000), 235.

[45]

M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems,, J. Math. Pures Appl., 78 (1999), 65. doi: 10.1016/S0021-7824(99)80010-5.

show all references

References:
[1]

G. Bal and G. Uhlmann, Inverse diffusion theory of photoacoustics,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/8/085010.

[2]

C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport,, Ann. Sci. École Norm. Sup., 3 (1970), 185.

[3]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024. doi: 10.1137/0330055.

[4]

M. I. Belishev, Boundary control in reconstruction of manifolds and metrics (the BC method),, Inverse Problems, 13 (1997). doi: 10.1088/0266-5611/13/5/002.

[5]

M. I. Belishev, Recent progress in the boundary control method,, Inverse Problems, 23 (2007). doi: 10.1088/0266-5611/23/5/R01.

[6]

M. Bellassoued and D. Dos Santos Ferreira, Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map,, Inverse Probl. Imaging, 5 (2011), 745. doi: 10.3934/ipi.2011.5.745.

[7]

M. Bellassoued and M. Yamamoto, Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation,, J. Math. Pures Appl. (9), 85 (2006), 193. doi: 10.1016/j.matpur.2005.02.004.

[8]

M. Bellassoued and M. Yamamoto, Determination of a coefficient in the wave equation with a single measurement,, Appl. Anal., 87 (2008), 901. doi: 10.1080/00036810802369249.

[9]

K. D. Blazek, C. Stolk and W. W. Symes, A mathematical framework for inverse wave problems in heterogeneous media,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/6/065001.

[10]

A. L. Bukhgeĭm and M. V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems,, Dokl. Akad. Nauk SSSR, 260 (1981), 269.

[11]

N. Burq, Contrôlabilité exacte des ondes dans des ouverts peu réguliers,, Asymptot. Anal., 14 (1997), 157.

[12]

J. Chen and Y. Yang, Quantitative photo-acoustic tomography with partial data,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/11/115014.

[13]

J. Chen and Y. Yang, Inverse problem of electro-seismic conversion,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/11/115006.

[14]

C. B. Croke, I. Lasiecka, G. Uhlmann and M. S. Vogelius (eds.), Geometric Methods in Inverse Problems and PDE Control,, The IMA Volumes in Mathematics and its Applications, (2004). doi: 10.1007/978-1-4684-9375-7.

[15]

K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations,, With contributions by S. Brendle, (2000).

[16]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (1998).

[17]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Reprint of the 1998 edition, (1998).

[18]

R. Glowinski, J.-L. Lions and J. He, Exact and Approximate Controllability for Distributed Parameter Systems. A Numerical Approach,, Encyclopedia of Mathematics and its Applications, (2008). doi: 10.1017/CBO9780511721595.

[19]

O. Y. Imanuvilov and M. Yamamoto, Global uniqueness and stability in determining coefficients of wave equations,, Comm. Partial Differential Equations, 26 (2001), 1409. doi: 10.1081/PDE-100106139.

[20]

O. Y. Imanuvilov and M. Yamamoto, Determination of a coefficient in an acoustic equation with a single measurement,, Inverse Problems, 19 (2003), 157. doi: 10.1088/0266-5611/19/1/309.

[21]

V. Isakov, Inverse Problems for Partial Differential Equations,, 2nd edition, (2006).

[22]

D. Jerison and C. E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains,, J. Funct. Anal., 130 (1995), 161. doi: 10.1006/jfan.1995.1067.

[23]

T. Kato, Perturbation Theory for Linear Operators,, Reprint of the 1980 edition, (1980).

[24]

M. V. Klibanov, Inverse problems and Carleman estimates,, Inverse Problems, 8 (1992), 575. doi: 10.1088/0266-5611/8/4/009.

[25]

M. V. Klibanov and M. Yamamoto, Lipschitz stability of an inverse problem for an acoustic equation,, Appl. Anal., 85 (2006), 515. doi: 10.1080/00036810500474788.

[26]

I. Lasiecka, J.-L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl. (9), 65 (1986), 149.

[27]

J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems,, SIAM Rev., 30 (1988), 1. doi: 10.1137/1030001.

[28]

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I-II,, Translated from the French by P. Kenneth, (1972).

[29]

S. Liu and L. Oksanen, A Lipschitz stable reconstruction formula for the inverse problem for the wave equation,, Accepted in Trans. Amer. Math. Soc., ().

[30]

S. Liu, Recovery of the sound speed and initial displacement for the wave equation by means of a single Dirichlet boundary measurement,, Evol. Equ. Control Theory, 2 (2013), 355. doi: 10.3934/eect.2013.2.355.

[31]

S. Liu and R. Triggiani, Global uniqueness and stability in determining the damping coefficient of an inverse hyperbolic problem with nonhomogeneous Neumann B.C. through an additional Dirichlet boundary trace,, SIAM J. Math. Anal., 43 (2011), 1631. doi: 10.1137/100808988.

[32]

S. Liu and R. Triggiani, Global uniqueness and stability in determining the damping coefficient of an inverse hyperbolic problem with non-homogeneous Dirichlet B.C. through an additional localized Neumann boundary trace,, Appl. Anal., 91 (2012), 1551. doi: 10.1080/00036811.2011.618125.

[33]

S. Liu and R. Triggiani, Recovering damping and potential coefficients for an inverse non-homogeneous second-order hyperbolic problem via a localized Neumann boundary trace,, Discrete Contin. Dyn. Syst., 33 (2013), 5217. doi: 10.3934/dcds.2013.33.5217.

[34]

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations,, Cambridge University Press, (2000).

[35]

J.-P. Puel and M. Yamamoto, Generic well-posedness in a multidimensional hyperbolic inverse problem,, J. Inverse Ill-Posed Probl., 5 (1997), 55. doi: 10.1515/jiip.1997.5.1.55.

[36]

J.-P. Puel and M. Yamamoto, On a global estimate in a linear inverse hyperbolic problem,, Inverse Problems, 12 (1996), 995. doi: 10.1088/0266-5611/12/6/013.

[37]

Rakesh and W. W. Symes, Uniqueness for an inverse problem for the wave equation,, Comm. Partial Differential Equations, 13 (1988), 87. doi: 10.1080/03605308808820539.

[38]

M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations,, 2nd edition, (2004).

[39]

P. Stefanov and G. Uhlmann, Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media,, J. Funct. Anal., 154 (1998), 330. doi: 10.1006/jfan.1997.3188.

[40]

P. Stefanov and G. Uhlmann, Stable determination of generic simple metrics from the hyperbolic Dirichlet-to-Neumann map,, Int. Math. Res. Not., (2005), 1047. doi: 10.1155/IMRN.2005.1047.

[41]

P. Stefanov and G. Uhlmann, Recovery of a source term or a speed with one measurement and applications,, Trans. Amer. Math. Soc., 365 (2013), 5737. doi: 10.1090/S0002-9947-2013-05703-0.

[42]

Z. Q. Sun, On continuous dependence for an inverse initial-boundary value problem for the wave equation,, J. Math. Anal. Appl., 150 (1990), 188. doi: 10.1016/0022-247X(90)90207-V.

[43]

J. Sylvester and G. Uhlmann, Inverse problems in anisotropic media,, in Inverse Scattering and Applications (Amherst, (1990), 105. doi: 10.1090/conm/122/1135861.

[44]

G. Uhlmann, Inverse scattering in anisotropic media,, in Surveys on Solution Methods for Inverse Problems, (2000), 235.

[45]

M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems,, J. Math. Pures Appl., 78 (1999), 65. doi: 10.1016/S0021-7824(99)80010-5.

[1]

Anna Doubova, Enrique Fernández-Cara. Some geometric inverse problems for the linear wave equation. Inverse Problems & Imaging, 2015, 9 (2) : 371-393. doi: 10.3934/ipi.2015.9.371

[2]

Michael V. Klibanov, Dinh-Liem Nguyen, Loc H. Nguyen, Hui Liu. A globally convergent numerical method for a 3D coefficient inverse problem with a single measurement of multi-frequency data. Inverse Problems & Imaging, 2018, 12 (2) : 493-523. doi: 10.3934/ipi.2018021

[3]

Shitao Liu. Recovery of the sound speed and initial displacement for the wave equation by means of a single Dirichlet boundary measurement. Evolution Equations & Control Theory, 2013, 2 (2) : 355-364. doi: 10.3934/eect.2013.2.355

[4]

Roland Griesmaier. Reciprocity gap music imaging for an inverse scattering problem in two-layered media. Inverse Problems & Imaging, 2009, 3 (3) : 389-403. doi: 10.3934/ipi.2009.3.389

[5]

Andrew Homan. Multi-wave imaging in attenuating media. Inverse Problems & Imaging, 2013, 7 (4) : 1235-1250. doi: 10.3934/ipi.2013.7.1235

[6]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[7]

Michel Cristofol, Shumin Li, Eric Soccorsi. Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary. Mathematical Control & Related Fields, 2016, 6 (3) : 407-427. doi: 10.3934/mcrf.2016009

[8]

A. Doubov, Enrique Fernández-Cara, Manuel González-Burgos, J. H. Ortega. A geometric inverse problem for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1213-1238. doi: 10.3934/dcdsb.2006.6.1213

[9]

Masaru Ikehata, Mishio Kawashita. An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method. Inverse Problems & Imaging, 2014, 8 (4) : 1073-1116. doi: 10.3934/ipi.2014.8.1073

[10]

Shi Jin, Dongsheng Yin. Computational high frequency wave diffraction by a corner via the Liouville equation and geometric theory of diffraction. Kinetic & Related Models, 2011, 4 (1) : 295-316. doi: 10.3934/krm.2011.4.295

[11]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[12]

Laurent Bourgeois, Dmitry Ponomarev, Jérémi Dardé. An inverse obstacle problem for the wave equation in a finite time domain. Inverse Problems & Imaging, 2019, 13 (2) : 377-400. doi: 10.3934/ipi.2019019

[13]

Frank Natterer. Incomplete data problems in wave equation imaging. Inverse Problems & Imaging, 2010, 4 (4) : 685-691. doi: 10.3934/ipi.2010.4.685

[14]

Peter C. Gibson. On the measurement operator for scattering in layered media. Inverse Problems & Imaging, 2017, 11 (1) : 87-97. doi: 10.3934/ipi.2017005

[15]

Fioralba Cakoni, Houssem Haddar. A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Problems & Imaging, 2007, 1 (3) : 443-456. doi: 10.3934/ipi.2007.1.443

[16]

Fioralba Cakoni, Houssem Haddar, Isaac Harris. Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem. Inverse Problems & Imaging, 2015, 9 (4) : 1025-1049. doi: 10.3934/ipi.2015.9.1025

[17]

Tzong-Yow Lee and Fred Torcaso. Wave propagation in a lattice KPP equation in random media. Electronic Research Announcements, 1997, 3: 121-125.

[18]

Armin Lechleiter, Marcel Rennoch. Non-linear Tikhonov regularization in Banach spaces for inverse scattering from anisotropic penetrable media. Inverse Problems & Imaging, 2017, 11 (1) : 151-176. doi: 10.3934/ipi.2017008

[19]

Eva Sincich, Mourad Sini. Local stability for soft obstacles by a single measurement. Inverse Problems & Imaging, 2008, 2 (2) : 301-315. doi: 10.3934/ipi.2008.2.301

[20]

Elie Assémat, Marc Lapert, Dominique Sugny, Steffen J. Glaser. On the application of geometric optimal control theory to Nuclear Magnetic Resonance. Mathematical Control & Related Fields, 2013, 3 (4) : 375-396. doi: 10.3934/mcrf.2013.3.375

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]