November  2015, 9(4): 1025-1049. doi: 10.3934/ipi.2015.9.1025

Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem

1. 

Department of Mathematics, Rutgers University, Piscataway, NJ 08854-8019, United States

2. 

INRIA, CMAP, Ecole polytechnique, Université Paris Saclay, Route de Saclay, 91128 Palaiseau, France

3. 

Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, United States

Received  September 2014 Revised  March 2015 Published  October 2015

We consider the interior transmission problem associated with the scattering by an inhomogeneous (possibly anisotropic) highly oscillating periodic media. We show that, under appropriate assumptions, the solution of the interior transmission problem converges to the solution of a homogenized problem as the period goes to zero. Furthermore, we prove that the associated real transmission eigenvalues converge to transmission eigenvalues of the homogenized problem. Finally we show how to use the first transmission eigenvalue of the period media, which is measurable from the scattering data, to obtain information about constant effective material properties of the periodic media. The convergence results presented here are not optimal. Such results with rate of convergence involve the analysis of the boundary correction and will be subject of a forthcoming paper.
Citation: Fioralba Cakoni, Houssem Haddar, Isaac Harris. Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem. Inverse Problems & Imaging, 2015, 9 (4) : 1025-1049. doi: 10.3934/ipi.2015.9.1025
References:
[1]

G. Allaire, Homogenization and two-scale convergence,, SIAM J. Math. Anal., 23 (1992), 1482. doi: 10.1137/0523084.

[2]

G. Allaire, Shape Optimization by the Homogenization Method,, Springer, (2002). doi: 10.1007/978-1-4684-9286-6.

[3]

A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures,, AMS Chelsea Publishing, (1978).

[4]

E. Blåsten, L. Päivärinta and J. Sylvester, Corners always scatter,, Commun. Math. Phys, 331 (2014), 725. doi: 10.1007/s00220-014-2030-0.

[5]

A. S. Bonnet-Ben Dhia, L. Chesnel and H. Haddar, On the use of T-coercivity to study the interior transmission eigenvalue problem,, C. R. Acad. Sci., 349 (2011), 647. doi: 10.1016/j.crma.2011.05.008.

[6]

F. Cakoni and D. Colton, Qualitative Approach to Inverse Scattering Theory,, Springer, (2014). doi: 10.1007/978-1-4614-8827-9.

[7]

F. Cakoni, D. Colton and H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data,, C. R. Math. Acad. Sci. Paris, 348 (2010), 379. doi: 10.1016/j.crma.2010.02.003.

[8]

F. Cakoni and D. Gintides, The interior transmission eigenvalue problem,, SIAM J. Math. Analysis, 42 (2010), 2912. doi: 10.1137/100793542.

[9]

F. Cakoni, D. Colton and H. Haddar, The computation of lower bounds for the norm of the index of refraction in an anisotropic media from far field data,, J. Integral Eqns. Appl., 21 (2009), 203. doi: 10.1216/JIE-2009-21-2-203.

[10]

F. Cakoni, D. Colton and H. Haddar, The linear sampling method for anisotropic media,, J.Comp. Appl. Math., 146 (2002), 285. doi: 10.1016/S0377-0427(02)00361-8.

[11]

F. Cakoni, D. Colton and H. Haddar, The interior transmission problem for regions with cavities,, SIAM J. Math. Analysis, 42 (2010), 145. doi: 10.1137/090754637.

[12]

F. Cakoni, D. Colton, P. Monk and J. Sun, The inverse electromagnetic scattering problem for anisotropic media,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/7/074004.

[13]

F. Cakoni, D. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues,, SIAM J. Math. Anal., 42 (2010), 237. doi: 10.1137/090769338.

[14]

F. Cakoni and H. Haddar, Transmission eigenvalues in inverse scattering theory,, Inverse Problems and Applications, 60 (2013), 529.

[15]

F. Cakoni and H. Haddar, Interior transmission problem for anisotropic media,, in Mathematical and Numerical Aspects of Wave Propagation-WAVES 2003 (eds. Cohen et al.), (2003), 613.

[16]

F. Cakoni and H. Haddar, On the existence of transmission eigenvalues in an inhomogeneous medium,, Applicable Analysis, 88 (2009), 475. doi: 10.1080/00036810802713966.

[17]

F. Cakoni and A. Kirsch, On the interior transmission eigenvalue problem,, Int. Jour. Comp. Sci. Math., 3 (2010), 142. doi: 10.1504/IJCSM.2010.033932.

[18]

A. Cossonnière, Valeurs Propres de Transmission et leur Utilisation dans L'identification D'inclusions à Partir de Mesures Électromagnètiques,, PhD thesis, (2011).

[19]

G. Giovanni and H. Haddar, Computing estimates on material properties from transmission eigenvalues,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/5/055009.

[20]

I. Harris, Non-destructive Testing of Anisotropic Materials,, Ph.D. Thesis, ().

[21]

I. Harris, F. Cakoni and J. Sun, Transmission eigenvalues and non-destructive testing of anisotropic magnetic materials with voids,, Inverse Problems, 30 (2014). doi: 10.1088/0266-5611/30/3/035016.

[22]

C. E. Kenig, F. Lin and Z. Shen, Estimates of eigenvalues and eigenfunctions in periodic homogenization,, J. Euro. Math. Soc., 15 (2013), 1901. doi: 10.4171/JEMS/408.

[23]

C. E. Kenig, F. Lin and Z. Shen, Convergence rates in $L^2$ for elliptic homogenization problems,, Arch. Rat. Mech. Anal., 203 (2012), 1009. doi: 10.1007/s00205-011-0469-0.

[24]

C. E. Kenig, F. Lin and Z. Shen, Homogenization of elliptic systems with Neumann boundary conditions,, J. Amer. Math. Soc., 26 (2013), 901. doi: 10.1090/S0894-0347-2013-00769-9.

[25]

S. Kesavan, Homogenization of elliptic eigenvalue problems: Part 1,, Appl. Math. Optim., 5 (1979), 153. doi: 10.1007/BF01442551.

[26]

S. Kesavan, Homogenization of elliptic eigenvalue problems: Part 2,, Appl. Math. Optim., 5 (1979), 197. doi: 10.1007/BF01442554.

[27]

A. Kirsch and A. Lechleiter, The inside-outside duality for scattering problems by inhomogeneous media,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/10/104011.

[28]

E. Lakshtanov and B. Vainberg, Ellipticity in the interior transmission problem in anisotropic media,, SIAM J. Math. Anal., 44 (2012), 1165. doi: 10.1137/11084738X.

[29]

E. Lakshtanov and B. Vainberg, Remarks on interior transmission eigenvalues, Weyl formula and branching billiards,, J. Phys. A: Math. Theor., 45 (2012). doi: 10.1088/1751-8113/45/12/125202.

[30]

S. Moskow and M. Vogelius, First-order corrections to the homogenized eigenvalues of periodic composite material. A convergence proof,, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1263. doi: 10.1017/S0308210500027050.

[31]

S. Moskow and M. Vogelius, First-order corrections to the homogenized eigenvalues of periodic composite material. The case of Neumann boundary conditions,, preprint, (1997).

[32]

L. Robbiano, Spectral analysis of the interior transmission eigenvalue problem,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/10/104001.

[33]

F. Santosa and M. Vogelius, First-order corrections to the homogenized eigenvalues of periodic composite medium,, SIAM J. Appl. Math., 53 (1993), 1636. doi: 10.1137/0153076.

[34]

J. Sun, Iterative methods for transmission eigenvalues,, SIAM J. Numer. Anal., 49 (2011), 1860. doi: 10.1137/100785478.

[35]

J. Sun and L. Xu, Computation of Maxwell's transmission eigenvalues and its applications in inverse medium problems,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/10/104013.

[36]

A. Wautier and B. Guzina, On the second-order homogenization of wave motion in periodic media and the sound of chessboard,, J. Mech. Phys. Solids, 78 (2015), 382. doi: 10.1016/j.jmps.2015.03.001.

[37]

J. Wloka, Partial Differential Equations,, Cambridge University Press, (1987). doi: 10.1017/CBO9781139171755.

show all references

References:
[1]

G. Allaire, Homogenization and two-scale convergence,, SIAM J. Math. Anal., 23 (1992), 1482. doi: 10.1137/0523084.

[2]

G. Allaire, Shape Optimization by the Homogenization Method,, Springer, (2002). doi: 10.1007/978-1-4684-9286-6.

[3]

A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures,, AMS Chelsea Publishing, (1978).

[4]

E. Blåsten, L. Päivärinta and J. Sylvester, Corners always scatter,, Commun. Math. Phys, 331 (2014), 725. doi: 10.1007/s00220-014-2030-0.

[5]

A. S. Bonnet-Ben Dhia, L. Chesnel and H. Haddar, On the use of T-coercivity to study the interior transmission eigenvalue problem,, C. R. Acad. Sci., 349 (2011), 647. doi: 10.1016/j.crma.2011.05.008.

[6]

F. Cakoni and D. Colton, Qualitative Approach to Inverse Scattering Theory,, Springer, (2014). doi: 10.1007/978-1-4614-8827-9.

[7]

F. Cakoni, D. Colton and H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data,, C. R. Math. Acad. Sci. Paris, 348 (2010), 379. doi: 10.1016/j.crma.2010.02.003.

[8]

F. Cakoni and D. Gintides, The interior transmission eigenvalue problem,, SIAM J. Math. Analysis, 42 (2010), 2912. doi: 10.1137/100793542.

[9]

F. Cakoni, D. Colton and H. Haddar, The computation of lower bounds for the norm of the index of refraction in an anisotropic media from far field data,, J. Integral Eqns. Appl., 21 (2009), 203. doi: 10.1216/JIE-2009-21-2-203.

[10]

F. Cakoni, D. Colton and H. Haddar, The linear sampling method for anisotropic media,, J.Comp. Appl. Math., 146 (2002), 285. doi: 10.1016/S0377-0427(02)00361-8.

[11]

F. Cakoni, D. Colton and H. Haddar, The interior transmission problem for regions with cavities,, SIAM J. Math. Analysis, 42 (2010), 145. doi: 10.1137/090754637.

[12]

F. Cakoni, D. Colton, P. Monk and J. Sun, The inverse electromagnetic scattering problem for anisotropic media,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/7/074004.

[13]

F. Cakoni, D. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues,, SIAM J. Math. Anal., 42 (2010), 237. doi: 10.1137/090769338.

[14]

F. Cakoni and H. Haddar, Transmission eigenvalues in inverse scattering theory,, Inverse Problems and Applications, 60 (2013), 529.

[15]

F. Cakoni and H. Haddar, Interior transmission problem for anisotropic media,, in Mathematical and Numerical Aspects of Wave Propagation-WAVES 2003 (eds. Cohen et al.), (2003), 613.

[16]

F. Cakoni and H. Haddar, On the existence of transmission eigenvalues in an inhomogeneous medium,, Applicable Analysis, 88 (2009), 475. doi: 10.1080/00036810802713966.

[17]

F. Cakoni and A. Kirsch, On the interior transmission eigenvalue problem,, Int. Jour. Comp. Sci. Math., 3 (2010), 142. doi: 10.1504/IJCSM.2010.033932.

[18]

A. Cossonnière, Valeurs Propres de Transmission et leur Utilisation dans L'identification D'inclusions à Partir de Mesures Électromagnètiques,, PhD thesis, (2011).

[19]

G. Giovanni and H. Haddar, Computing estimates on material properties from transmission eigenvalues,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/5/055009.

[20]

I. Harris, Non-destructive Testing of Anisotropic Materials,, Ph.D. Thesis, ().

[21]

I. Harris, F. Cakoni and J. Sun, Transmission eigenvalues and non-destructive testing of anisotropic magnetic materials with voids,, Inverse Problems, 30 (2014). doi: 10.1088/0266-5611/30/3/035016.

[22]

C. E. Kenig, F. Lin and Z. Shen, Estimates of eigenvalues and eigenfunctions in periodic homogenization,, J. Euro. Math. Soc., 15 (2013), 1901. doi: 10.4171/JEMS/408.

[23]

C. E. Kenig, F. Lin and Z. Shen, Convergence rates in $L^2$ for elliptic homogenization problems,, Arch. Rat. Mech. Anal., 203 (2012), 1009. doi: 10.1007/s00205-011-0469-0.

[24]

C. E. Kenig, F. Lin and Z. Shen, Homogenization of elliptic systems with Neumann boundary conditions,, J. Amer. Math. Soc., 26 (2013), 901. doi: 10.1090/S0894-0347-2013-00769-9.

[25]

S. Kesavan, Homogenization of elliptic eigenvalue problems: Part 1,, Appl. Math. Optim., 5 (1979), 153. doi: 10.1007/BF01442551.

[26]

S. Kesavan, Homogenization of elliptic eigenvalue problems: Part 2,, Appl. Math. Optim., 5 (1979), 197. doi: 10.1007/BF01442554.

[27]

A. Kirsch and A. Lechleiter, The inside-outside duality for scattering problems by inhomogeneous media,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/10/104011.

[28]

E. Lakshtanov and B. Vainberg, Ellipticity in the interior transmission problem in anisotropic media,, SIAM J. Math. Anal., 44 (2012), 1165. doi: 10.1137/11084738X.

[29]

E. Lakshtanov and B. Vainberg, Remarks on interior transmission eigenvalues, Weyl formula and branching billiards,, J. Phys. A: Math. Theor., 45 (2012). doi: 10.1088/1751-8113/45/12/125202.

[30]

S. Moskow and M. Vogelius, First-order corrections to the homogenized eigenvalues of periodic composite material. A convergence proof,, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1263. doi: 10.1017/S0308210500027050.

[31]

S. Moskow and M. Vogelius, First-order corrections to the homogenized eigenvalues of periodic composite material. The case of Neumann boundary conditions,, preprint, (1997).

[32]

L. Robbiano, Spectral analysis of the interior transmission eigenvalue problem,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/10/104001.

[33]

F. Santosa and M. Vogelius, First-order corrections to the homogenized eigenvalues of periodic composite medium,, SIAM J. Appl. Math., 53 (1993), 1636. doi: 10.1137/0153076.

[34]

J. Sun, Iterative methods for transmission eigenvalues,, SIAM J. Numer. Anal., 49 (2011), 1860. doi: 10.1137/100785478.

[35]

J. Sun and L. Xu, Computation of Maxwell's transmission eigenvalues and its applications in inverse medium problems,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/10/104013.

[36]

A. Wautier and B. Guzina, On the second-order homogenization of wave motion in periodic media and the sound of chessboard,, J. Mech. Phys. Solids, 78 (2015), 382. doi: 10.1016/j.jmps.2015.03.001.

[37]

J. Wloka, Partial Differential Equations,, Cambridge University Press, (1987). doi: 10.1017/CBO9781139171755.

[1]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[2]

David Colton, Lassi Päivärinta, John Sylvester. The interior transmission problem. Inverse Problems & Imaging, 2007, 1 (1) : 13-28. doi: 10.3934/ipi.2007.1.13

[3]

Vesselin Petkov, Georgi Vodev. Localization of the interior transmission eigenvalues for a ball. Inverse Problems & Imaging, 2017, 11 (2) : 355-372. doi: 10.3934/ipi.2017017

[4]

Luc Robbiano. Counting function for interior transmission eigenvalues. Mathematical Control & Related Fields, 2016, 6 (1) : 167-183. doi: 10.3934/mcrf.2016.6.167

[5]

Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems & Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487

[6]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[7]

Fioralba Cakoni, Anne Cossonnière, Houssem Haddar. Transmission eigenvalues for inhomogeneous media containing obstacles. Inverse Problems & Imaging, 2012, 6 (3) : 373-398. doi: 10.3934/ipi.2012.6.373

[8]

Fioralba Cakoni, Houssem Haddar. A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Problems & Imaging, 2007, 1 (3) : 443-456. doi: 10.3934/ipi.2007.1.443

[9]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems & Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

[10]

Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems & Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211

[11]

Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems & Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793

[12]

Fioralba Cakoni, Shari Moskow, Scott Rome. The perturbation of transmission eigenvalues for inhomogeneous media in the presence of small penetrable inclusions. Inverse Problems & Imaging, 2015, 9 (3) : 725-748. doi: 10.3934/ipi.2015.9.725

[13]

Fioralba Cakoni, Drossos Gintides. New results on transmission eigenvalues. Inverse Problems & Imaging, 2010, 4 (1) : 39-48. doi: 10.3934/ipi.2010.4.39

[14]

Andreas Kirsch. On the existence of transmission eigenvalues. Inverse Problems & Imaging, 2009, 3 (2) : 155-172. doi: 10.3934/ipi.2009.3.155

[15]

Guillermo Reyes, Juan-Luis Vázquez. The Cauchy problem for the inhomogeneous porous medium equation. Networks & Heterogeneous Media, 2006, 1 (2) : 337-351. doi: 10.3934/nhm.2006.1.337

[16]

Armin Lechleiter. The factorization method is independent of transmission eigenvalues. Inverse Problems & Imaging, 2009, 3 (1) : 123-138. doi: 10.3934/ipi.2009.3.123

[17]

David Colton, Yuk-J. Leung. On a transmission eigenvalue problem for a spherically stratified coated dielectric. Inverse Problems & Imaging, 2016, 10 (2) : 369-378. doi: 10.3934/ipi.2016004

[18]

Massimo Lanza de Cristoforis, aolo Musolino. A quasi-linear heat transmission problem in a periodic two-phase dilute composite. A functional analytic approach. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2509-2542. doi: 10.3934/cpaa.2014.13.2509

[19]

Ha Pham, Plamen Stefanov. Weyl asymptotics of the transmission eigenvalues for a constant index of refraction. Inverse Problems & Imaging, 2014, 8 (3) : 795-810. doi: 10.3934/ipi.2014.8.795

[20]

Yalin Zhang, Guoliang Shi. Continuous dependence of the transmission eigenvalues in one dimension. Inverse Problems & Imaging, 2015, 9 (1) : 273-287. doi: 10.3934/ipi.2015.9.273

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]