February  2015, 9(1): 1-25. doi: 10.3934/ipi.2015.9.1

Optimization approach for the simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions from limited observations

1. 

Department of Mathematical Sciences, Chalmers University of Technology and Gothenburg University, SE-412 96 Gothenburg, Sweden

2. 

Institut de Mathématiques de Marseille, Aix-Marseille Université, 13453 Marseille, France

3. 

Aix-Marseille Université, 13453 Marseille, France

Received  April 2014 Revised  September 2014 Published  January 2015

We consider the inverse problem of the simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions of the Maxwell's system in 3D with limited boundary observations of the electric field. The theoretical stability for the problem is provided by the Carleman estimates. For the numerical computations the problem is formulated as an optimization problem and hybrid finite element/difference method is used to solve the parameter identification problem.
Citation: Larisa Beilina, Michel Cristofol, Kati Niinimäki. Optimization approach for the simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions from limited observations. Inverse Problems & Imaging, 2015, 9 (1) : 1-25. doi: 10.3934/ipi.2015.9.1
References:
[1]

F. Assous, P. Degond, E. Heintze and P. Raviart, On a finite-element method for solving the three-dimensional Maxwell equations,, Journal of Computational Physics, 109 (1993), 222. doi: 10.1006/jcph.1993.1214. Google Scholar

[2]

A. Bakushinsky, M. Y. Kokurin and A. Smirnova, Iterative Methods for Ill-posed Problems,, Inverse and Ill-Posed Problems Series 54, (2011). Google Scholar

[3]

L. Beilina, Energy estimates and numerical verification of the stabilized Domain Decomposition Finite Element/Finite Difference approach for time-dependent Maxwell's system,, Central European Journal of Mathematics, 11 (2013), 702. doi: 10.2478/s11533-013-0202-3. Google Scholar

[4]

L. Beilina, Adaptive Finite Element Method for a coefficient inverse problem for the Maxwell's system,, Applicable Analysis, 90 (2011), 1461. doi: 10.1080/00036811.2010.502116. Google Scholar

[5]

L. Beilina and M. Grote, Adaptive Hybrid Finite Element/Difference Method for Maxwell's equations,, TWMS Journal of Pure and Applied Mathematics, 1 (2010), 176. Google Scholar

[6]

L. Beilina and C. Johnson, A posteriori error estimation in computational inverse scattering,, Mathematical Models in Applied Sciences, 15 (2005), 23. doi: 10.1142/S0218202505003885. Google Scholar

[7]

L. Beilina, N. T. Thành, M. V. Klibanov and J. Bondestam-Malmberg, Reconstruction of shapes and refractive indices from blind backscattering experimental data using the adaptivity,, Inverse Problems, 30 (2014). Google Scholar

[8]

L. Beilina, N. T. Thành, M. V. Klibanov and M. A. Fiddy, Reconstruction from blind experimental data for an inverse problem for a hyperbolic equation,, Inverse Problems, 30 (2014). doi: 10.1088/0266-5611/30/2/025002. Google Scholar

[9]

M. I. Belishev and V. M. Isakov, On the uniqueness of the recovery of parameters of the Maxwell system from dynamical boundary data,, Journal of Mathematical Sciences, 122 (2004), 3459. doi: 10.1023/B:JOTH.0000034024.38243.02. Google Scholar

[10]

M. Bellassoued, M. Cristofol and E. Soccorsi, Inverse boundary value problem for the dynamical heterogeneous Maxwell's system,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/9/095009. Google Scholar

[11]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,, Springer-Verlag, (1994). doi: 10.1007/978-1-4757-4338-8. Google Scholar

[12]

P. Caro, Stable determination of the electromagnetic coefficients by boundary measurements,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/10/105014. Google Scholar

[13]

P. Caro, P. Ola and M. Salo, Inverse boundary value problem for Maxwell equations with local data,, Communications in Partial Differential Equations, 34 (2009), 1425. doi: 10.1080/03605300903296272. Google Scholar

[14]

J. M. Catalá-Civera, A. J. Canós-Marin, L. Sempere and E. de los Reyes, Microwaveresonator for the non-invasive evaluation of degradation processes in liquid composites,, IEEE Electronic Letters, 37 (2001), 99. Google Scholar

[15]

H. S. Cho, S. Kim, J. Kim and J. Jung, Determination of allowable defect size in multimode polymer waveguides fabricated by printed circuit board compatible processes,, Journal of Micromechanics and Microengineering, 20 (2010). doi: 10.1088/0960-1317/20/3/035035. Google Scholar

[16]

P. Ciarlet, Jr. and J. Zou, Fully discrete finite element approaches for time-dependent Maxwell's equations,, Numerische Mathematik, 82 (1999), 193. doi: 10.1007/s002110050417. Google Scholar

[17]

P. Ciarlet, H. Wu and J. Zou, Edge element methods for Maxwell's equations with strong convergence for Gauss' laws,, SIAM Journal on Numerical Analysis, 52 (2014), 779. doi: 10.1137/120899856. Google Scholar

[18]

G. C. Cohen, Higher Order Numerical Methods for Transient Wave Equations,, Springer-Verlag, (2002). doi: 10.1007/978-3-662-04823-8. Google Scholar

[19]

R. Courant, K. Friedrichs and H. Lewy, On the partial differential equations of mathematical physics,, IBM Journal of Research and Development, 11 (1967), 215. doi: 10.1147/rd.112.0215. Google Scholar

[20]

D. W. Einters, J. D. Shea, P. Komas, B. D. Van Veen and S. C. Hagness, Three-dimensional microwave breast imaging: Dispersive dielectric properties estimation using patient-specific basis functions,, IEEE Transactions on Medical Imaging, 28 (2009), 969. Google Scholar

[21]

M. Eller, V. Isakov, G. Nakamura and D. Tataru, Uniqueness and stability in the Cauchy problem for Maxwell and elasticity systems,, in Nonlinear Partial Differential Equations and their Applications, 31 (2002), 329. doi: 10.1016/S0168-2024(02)80016-9. Google Scholar

[22]

A. Elmkies and P. Joly, Finite elements and mass lumping for Maxwell's equations: the 2D case,, Numerical Analysis, 324 (1997), 1287. doi: 10.1016/S0764-4442(99)80415-7. Google Scholar

[23]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems,, Boston: Kluwer Academic Publishers, (2000). Google Scholar

[24]

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves,, Mathematics of Computation, 31 (1977), 629. doi: 10.1090/S0025-5718-1977-0436612-4. Google Scholar

[25]

H. Feng, D. Jiang and J. Zou, Simultaneous identification of electric permittivity and magnetic permeability,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/9/095009. Google Scholar

[26]

M. J. Grote, A. Schneebeli and D. Schötzau, Interior penalty discontinuous Galerkin method for Maxwell's equations: Energy norm error estimates,, Journal of Computational and Applied Mathematics, 204 (2007), 375. doi: 10.1016/j.cam.2006.01.044. Google Scholar

[27]

M. V. de Hoop, L. Qiu and O. Scherzer, Local analysis of inverse problems: Höder stability and iterative reconstruction,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/4/045001. Google Scholar

[28]

K. Ito, B. Jin and T. Takeuchi, Multi-parameter Tikhonov regularization,, Methods and Applications of Analysis, 18 (2011), 31. doi: 10.4310/MAA.2011.v18.n1.a2. Google Scholar

[29]

P. Joly, Variational methods for time-dependent wave propagation problems,, Lecture Notes in Computational Science and Engineering, 31 (2003), 201. doi: 10.1007/978-3-642-55483-4_6. Google Scholar

[30]

M. V. Klibanov, Uniqueness of the solution of two inverse problems for a Maxwellian system,, Computational Mathematics and Mathematical Physics, 26 (1986), 1063. Google Scholar

[31]

Y. Kurylev, M. Lassas and E. Somersalo, Maxwell's equations with a polarization independent wave velocity: Direct and inverse problems,, Journal de Mathematiques Pures et Appliquees, 86 (2006), 237. doi: 10.1016/j.matpur.2006.01.008. Google Scholar

[32]

A. V. Kuzhuget, L. Beilina, M. V. Klibanov, A. Sullivan, L. Nguyen and M. A. Fiddy, Blind experimental data collected in the field and an approximately globally convergent inverse algorithm,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/9/095007. Google Scholar

[33]

R. L. Lee and N. K. Madsen, A mixed finite element formulation for Maxwell's equations in the time domain,, Journal of Computational Physics, 88 (1990), 284. doi: 10.1016/0021-9991(90)90181-Y. Google Scholar

[34]

S. Li, An inverse problem for Maxwell's equations in bi-isotropic media,, SIAM Journal on Mathematical Analysis, 37 (2005), 1027. doi: 10.1137/S003614100444366X. Google Scholar

[35]

S. Li and M. Yamomoto, Carleman estimate for Maxwell's Equations in anisotropic media and the observability inequality,, Journal of Physics: Conference Series, 12 (2005), 110. doi: 10.1088/1742-6596/12/1/011. Google Scholar

[36]

S. Li and M. Yamamoto, An inverse source problem for Maxwell's equations in anisotropic media,, Applicable Analysis, 84 (2005), 1051. doi: 10.1080/00036810500047725. Google Scholar

[37]

P. B. Monk, Finite Element Methods for Maxwell's Equations,, Oxford University Press, (2003). doi: 10.1093/acprof:oso/9780198508885.001.0001. Google Scholar

[38]

J. Monzó, A. Díaz, J. V. Balbastre, D. Sánchez-Hernández and E. de los Reyes, Selective Heating and Moisture Leveling in Microwave-assisted Trying of Laminal Materials: Explicit Model,, 8th Int. Conf. on Microwave and High Frequency heating AMPERE, (2001). Google Scholar

[39]

C. D. Munz, P. Omnes, R. Schneider, E. Sonnendrucker and U. Voss, Divergence correction techniques for Maxwell Solvers based on a hyperbolic model,, Journal of Computational Physics, 161 (2000), 484. doi: 10.1006/jcph.2000.6507. Google Scholar

[40]

J. C. Nédélec, A new family of mixed finite elements in $\mathbbR^3 $,, NUMMA, 50 (1986), 57. doi: 10.1007/BF01389668. Google Scholar

[41]

P. Ola, L. Päivarinta and E. Somersalo, An inverse boundary value problem in electrodynamics,, Duke Mathematical Journal, 70 (1993), 617. doi: 10.1215/S0012-7094-93-07014-7. Google Scholar

[42]

K. D. Paulsen and D. R. Lynch, Elimination of vector parasities in Finite Element Maxwell solutions,, IEEE Transactions on Microwave Theory and Techniques, 39 (1991), 395. Google Scholar

[43]

PETSc, Portable, Extensible Toolkit for Scientific Computation,, , (). Google Scholar

[44]

O. Pironneau, Optimal Shape Design for Elliptic Systems,, Springer-Verlag, (1984). doi: 10.1007/978-3-642-87722-3. Google Scholar

[45]

J. Pitarch, M. Contelles-Cervera, F. L. Peñaranda-Foix and J. M. Catalá-Civera, Determination of the permittivity and permeability for waveguides partially loaded with isotropic samples,, Measurement Science and Technology, 17 (2006), 145. doi: 10.1088/0957-0233/17/1/024. Google Scholar

[46]

M. Salo, C. Kenig and G. Uhlmann, Inverse problems for the anisotropic Maxwell equations,, Duke Matematical Journal, 157 (2011), 369. doi: 10.1215/00127094-1272903. Google Scholar

[47]

Y. G. Smirnov, Y. G Shestopalov and E. D. Derevyanchyk, Reconstruction of permittivity and permeability tensors of anisotropic materials in a rectangular waveguides from the reflection and transmission coefficients from different frequencies,, Proceedings of Progress in Electromagnetic Research Symposium, (2013), 290. Google Scholar

[48]

D. R. Smith, S. Schultz, P. Markos and C. M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,, Physical Review B, 65 (2002). doi: 10.1103/PhysRevB.65.195104. Google Scholar

[49]

N. T. Thành, L. Beilina, M. V. Klibanov and M. A. Fiddy, Reconstruction of the refractive index from experimental backscattering data using a globally convergent inverse method,, SIAM J. Scientific Computing, 36 (2014), 273. Google Scholar

[50]

A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov and A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems,, Kluwer, (1995). doi: 10.1007/978-94-015-8480-7. Google Scholar

[51]

WavES, the software package,, , (). Google Scholar

[52]

X. Zhang, H. Tortel, S. Ruy and A. Litman, Microwave imaging of soil water diffusion using the linear sampling method,, IEEE Geoscience and Remote Sensing Letters, 8 (2011), 421. doi: 10.1109/LGRS.2010.2082490. Google Scholar

show all references

References:
[1]

F. Assous, P. Degond, E. Heintze and P. Raviart, On a finite-element method for solving the three-dimensional Maxwell equations,, Journal of Computational Physics, 109 (1993), 222. doi: 10.1006/jcph.1993.1214. Google Scholar

[2]

A. Bakushinsky, M. Y. Kokurin and A. Smirnova, Iterative Methods for Ill-posed Problems,, Inverse and Ill-Posed Problems Series 54, (2011). Google Scholar

[3]

L. Beilina, Energy estimates and numerical verification of the stabilized Domain Decomposition Finite Element/Finite Difference approach for time-dependent Maxwell's system,, Central European Journal of Mathematics, 11 (2013), 702. doi: 10.2478/s11533-013-0202-3. Google Scholar

[4]

L. Beilina, Adaptive Finite Element Method for a coefficient inverse problem for the Maxwell's system,, Applicable Analysis, 90 (2011), 1461. doi: 10.1080/00036811.2010.502116. Google Scholar

[5]

L. Beilina and M. Grote, Adaptive Hybrid Finite Element/Difference Method for Maxwell's equations,, TWMS Journal of Pure and Applied Mathematics, 1 (2010), 176. Google Scholar

[6]

L. Beilina and C. Johnson, A posteriori error estimation in computational inverse scattering,, Mathematical Models in Applied Sciences, 15 (2005), 23. doi: 10.1142/S0218202505003885. Google Scholar

[7]

L. Beilina, N. T. Thành, M. V. Klibanov and J. Bondestam-Malmberg, Reconstruction of shapes and refractive indices from blind backscattering experimental data using the adaptivity,, Inverse Problems, 30 (2014). Google Scholar

[8]

L. Beilina, N. T. Thành, M. V. Klibanov and M. A. Fiddy, Reconstruction from blind experimental data for an inverse problem for a hyperbolic equation,, Inverse Problems, 30 (2014). doi: 10.1088/0266-5611/30/2/025002. Google Scholar

[9]

M. I. Belishev and V. M. Isakov, On the uniqueness of the recovery of parameters of the Maxwell system from dynamical boundary data,, Journal of Mathematical Sciences, 122 (2004), 3459. doi: 10.1023/B:JOTH.0000034024.38243.02. Google Scholar

[10]

M. Bellassoued, M. Cristofol and E. Soccorsi, Inverse boundary value problem for the dynamical heterogeneous Maxwell's system,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/9/095009. Google Scholar

[11]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,, Springer-Verlag, (1994). doi: 10.1007/978-1-4757-4338-8. Google Scholar

[12]

P. Caro, Stable determination of the electromagnetic coefficients by boundary measurements,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/10/105014. Google Scholar

[13]

P. Caro, P. Ola and M. Salo, Inverse boundary value problem for Maxwell equations with local data,, Communications in Partial Differential Equations, 34 (2009), 1425. doi: 10.1080/03605300903296272. Google Scholar

[14]

J. M. Catalá-Civera, A. J. Canós-Marin, L. Sempere and E. de los Reyes, Microwaveresonator for the non-invasive evaluation of degradation processes in liquid composites,, IEEE Electronic Letters, 37 (2001), 99. Google Scholar

[15]

H. S. Cho, S. Kim, J. Kim and J. Jung, Determination of allowable defect size in multimode polymer waveguides fabricated by printed circuit board compatible processes,, Journal of Micromechanics and Microengineering, 20 (2010). doi: 10.1088/0960-1317/20/3/035035. Google Scholar

[16]

P. Ciarlet, Jr. and J. Zou, Fully discrete finite element approaches for time-dependent Maxwell's equations,, Numerische Mathematik, 82 (1999), 193. doi: 10.1007/s002110050417. Google Scholar

[17]

P. Ciarlet, H. Wu and J. Zou, Edge element methods for Maxwell's equations with strong convergence for Gauss' laws,, SIAM Journal on Numerical Analysis, 52 (2014), 779. doi: 10.1137/120899856. Google Scholar

[18]

G. C. Cohen, Higher Order Numerical Methods for Transient Wave Equations,, Springer-Verlag, (2002). doi: 10.1007/978-3-662-04823-8. Google Scholar

[19]

R. Courant, K. Friedrichs and H. Lewy, On the partial differential equations of mathematical physics,, IBM Journal of Research and Development, 11 (1967), 215. doi: 10.1147/rd.112.0215. Google Scholar

[20]

D. W. Einters, J. D. Shea, P. Komas, B. D. Van Veen and S. C. Hagness, Three-dimensional microwave breast imaging: Dispersive dielectric properties estimation using patient-specific basis functions,, IEEE Transactions on Medical Imaging, 28 (2009), 969. Google Scholar

[21]

M. Eller, V. Isakov, G. Nakamura and D. Tataru, Uniqueness and stability in the Cauchy problem for Maxwell and elasticity systems,, in Nonlinear Partial Differential Equations and their Applications, 31 (2002), 329. doi: 10.1016/S0168-2024(02)80016-9. Google Scholar

[22]

A. Elmkies and P. Joly, Finite elements and mass lumping for Maxwell's equations: the 2D case,, Numerical Analysis, 324 (1997), 1287. doi: 10.1016/S0764-4442(99)80415-7. Google Scholar

[23]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems,, Boston: Kluwer Academic Publishers, (2000). Google Scholar

[24]

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves,, Mathematics of Computation, 31 (1977), 629. doi: 10.1090/S0025-5718-1977-0436612-4. Google Scholar

[25]

H. Feng, D. Jiang and J. Zou, Simultaneous identification of electric permittivity and magnetic permeability,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/9/095009. Google Scholar

[26]

M. J. Grote, A. Schneebeli and D. Schötzau, Interior penalty discontinuous Galerkin method for Maxwell's equations: Energy norm error estimates,, Journal of Computational and Applied Mathematics, 204 (2007), 375. doi: 10.1016/j.cam.2006.01.044. Google Scholar

[27]

M. V. de Hoop, L. Qiu and O. Scherzer, Local analysis of inverse problems: Höder stability and iterative reconstruction,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/4/045001. Google Scholar

[28]

K. Ito, B. Jin and T. Takeuchi, Multi-parameter Tikhonov regularization,, Methods and Applications of Analysis, 18 (2011), 31. doi: 10.4310/MAA.2011.v18.n1.a2. Google Scholar

[29]

P. Joly, Variational methods for time-dependent wave propagation problems,, Lecture Notes in Computational Science and Engineering, 31 (2003), 201. doi: 10.1007/978-3-642-55483-4_6. Google Scholar

[30]

M. V. Klibanov, Uniqueness of the solution of two inverse problems for a Maxwellian system,, Computational Mathematics and Mathematical Physics, 26 (1986), 1063. Google Scholar

[31]

Y. Kurylev, M. Lassas and E. Somersalo, Maxwell's equations with a polarization independent wave velocity: Direct and inverse problems,, Journal de Mathematiques Pures et Appliquees, 86 (2006), 237. doi: 10.1016/j.matpur.2006.01.008. Google Scholar

[32]

A. V. Kuzhuget, L. Beilina, M. V. Klibanov, A. Sullivan, L. Nguyen and M. A. Fiddy, Blind experimental data collected in the field and an approximately globally convergent inverse algorithm,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/9/095007. Google Scholar

[33]

R. L. Lee and N. K. Madsen, A mixed finite element formulation for Maxwell's equations in the time domain,, Journal of Computational Physics, 88 (1990), 284. doi: 10.1016/0021-9991(90)90181-Y. Google Scholar

[34]

S. Li, An inverse problem for Maxwell's equations in bi-isotropic media,, SIAM Journal on Mathematical Analysis, 37 (2005), 1027. doi: 10.1137/S003614100444366X. Google Scholar

[35]

S. Li and M. Yamomoto, Carleman estimate for Maxwell's Equations in anisotropic media and the observability inequality,, Journal of Physics: Conference Series, 12 (2005), 110. doi: 10.1088/1742-6596/12/1/011. Google Scholar

[36]

S. Li and M. Yamamoto, An inverse source problem for Maxwell's equations in anisotropic media,, Applicable Analysis, 84 (2005), 1051. doi: 10.1080/00036810500047725. Google Scholar

[37]

P. B. Monk, Finite Element Methods for Maxwell's Equations,, Oxford University Press, (2003). doi: 10.1093/acprof:oso/9780198508885.001.0001. Google Scholar

[38]

J. Monzó, A. Díaz, J. V. Balbastre, D. Sánchez-Hernández and E. de los Reyes, Selective Heating and Moisture Leveling in Microwave-assisted Trying of Laminal Materials: Explicit Model,, 8th Int. Conf. on Microwave and High Frequency heating AMPERE, (2001). Google Scholar

[39]

C. D. Munz, P. Omnes, R. Schneider, E. Sonnendrucker and U. Voss, Divergence correction techniques for Maxwell Solvers based on a hyperbolic model,, Journal of Computational Physics, 161 (2000), 484. doi: 10.1006/jcph.2000.6507. Google Scholar

[40]

J. C. Nédélec, A new family of mixed finite elements in $\mathbbR^3 $,, NUMMA, 50 (1986), 57. doi: 10.1007/BF01389668. Google Scholar

[41]

P. Ola, L. Päivarinta and E. Somersalo, An inverse boundary value problem in electrodynamics,, Duke Mathematical Journal, 70 (1993), 617. doi: 10.1215/S0012-7094-93-07014-7. Google Scholar

[42]

K. D. Paulsen and D. R. Lynch, Elimination of vector parasities in Finite Element Maxwell solutions,, IEEE Transactions on Microwave Theory and Techniques, 39 (1991), 395. Google Scholar

[43]

PETSc, Portable, Extensible Toolkit for Scientific Computation,, , (). Google Scholar

[44]

O. Pironneau, Optimal Shape Design for Elliptic Systems,, Springer-Verlag, (1984). doi: 10.1007/978-3-642-87722-3. Google Scholar

[45]

J. Pitarch, M. Contelles-Cervera, F. L. Peñaranda-Foix and J. M. Catalá-Civera, Determination of the permittivity and permeability for waveguides partially loaded with isotropic samples,, Measurement Science and Technology, 17 (2006), 145. doi: 10.1088/0957-0233/17/1/024. Google Scholar

[46]

M. Salo, C. Kenig and G. Uhlmann, Inverse problems for the anisotropic Maxwell equations,, Duke Matematical Journal, 157 (2011), 369. doi: 10.1215/00127094-1272903. Google Scholar

[47]

Y. G. Smirnov, Y. G Shestopalov and E. D. Derevyanchyk, Reconstruction of permittivity and permeability tensors of anisotropic materials in a rectangular waveguides from the reflection and transmission coefficients from different frequencies,, Proceedings of Progress in Electromagnetic Research Symposium, (2013), 290. Google Scholar

[48]

D. R. Smith, S. Schultz, P. Markos and C. M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,, Physical Review B, 65 (2002). doi: 10.1103/PhysRevB.65.195104. Google Scholar

[49]

N. T. Thành, L. Beilina, M. V. Klibanov and M. A. Fiddy, Reconstruction of the refractive index from experimental backscattering data using a globally convergent inverse method,, SIAM J. Scientific Computing, 36 (2014), 273. Google Scholar

[50]

A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov and A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems,, Kluwer, (1995). doi: 10.1007/978-94-015-8480-7. Google Scholar

[51]

WavES, the software package,, , (). Google Scholar

[52]

X. Zhang, H. Tortel, S. Ruy and A. Litman, Microwave imaging of soil water diffusion using the linear sampling method,, IEEE Geoscience and Remote Sensing Letters, 8 (2011), 421. doi: 10.1109/LGRS.2010.2082490. Google Scholar

[1]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[2]

Laurent Bourgeois, Dmitry Ponomarev, Jérémi Dardé. An inverse obstacle problem for the wave equation in a finite time domain. Inverse Problems & Imaging, 2019, 13 (2) : 377-400. doi: 10.3934/ipi.2019019

[3]

Michael V. Klibanov, Dinh-Liem Nguyen, Loc H. Nguyen, Hui Liu. A globally convergent numerical method for a 3D coefficient inverse problem with a single measurement of multi-frequency data. Inverse Problems & Imaging, 2018, 12 (2) : 493-523. doi: 10.3934/ipi.2018021

[4]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[5]

Takeshi Fukao, Masahiro Kubo. Time-dependent obstacle problem in thermohydraulics. Conference Publications, 2009, 2009 (Special) : 240-249. doi: 10.3934/proc.2009.2009.240

[6]

Giuseppe Maria Coclite, Mauro Garavello, Laura V. Spinolo. Optimal strategies for a time-dependent harvesting problem. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 865-900. doi: 10.3934/dcdss.2018053

[7]

Mohsen Tadi. A computational method for an inverse problem in a parabolic system. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 205-218. doi: 10.3934/dcdsb.2009.12.205

[8]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[9]

María Teresa Cao-Rial, Peregrina Quintela, Carlos Moreno. Numerical solution of a time-dependent Signorini contact problem. Conference Publications, 2007, 2007 (Special) : 201-211. doi: 10.3934/proc.2007.2007.201

[10]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[11]

Mourad Choulli, Yavar Kian. Stability of the determination of a time-dependent coefficient in parabolic equations. Mathematical Control & Related Fields, 2013, 3 (2) : 143-160. doi: 10.3934/mcrf.2013.3.143

[12]

Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (5) : 875-900. doi: 10.3934/ipi.2017041

[13]

Li-Fang Dai, Mao-Lin Liang, Wei-Yuan Ma. Optimization problems on the rank of the solution to left and right inverse eigenvalue problem. Journal of Industrial & Management Optimization, 2015, 11 (1) : 171-183. doi: 10.3934/jimo.2015.11.171

[14]

Victor Isakov, Joseph Myers. On the inverse doping profile problem. Inverse Problems & Imaging, 2012, 6 (3) : 465-486. doi: 10.3934/ipi.2012.6.465

[15]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216

[16]

Kim Knudsen, Matti Lassas, Jennifer L. Mueller, Samuli Siltanen. Regularized D-bar method for the inverse conductivity problem. Inverse Problems & Imaging, 2009, 3 (4) : 599-624. doi: 10.3934/ipi.2009.3.599

[17]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[18]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems & Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[19]

Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007

[20]

Hongtruong Pham, Xiwen Lu. The inverse parallel machine scheduling problem with minimum total completion time. Journal of Industrial & Management Optimization, 2014, 10 (2) : 613-620. doi: 10.3934/jimo.2014.10.613

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (3)

[Back to Top]