November  2014, 8(4): 1073-1116. doi: 10.3934/ipi.2014.8.1073

An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method

1. 

Laboratory of Mathematics, Institute of Engineering, Hiroshima University, Higashi Hiroshima 739-8527, Japan

2. 

Department of Mathematics, Graduate School of Sciences, Hiroshima University, Higashi Hiroshima 739-8526, Japan

Received  December 2013 Revised  October 2014 Published  November 2014

This paper studies a prototype of inverse initial boundary value problems whose governing equation is the heat equation in three dimensions. An unknown discontinuity embedded in a three-dimensional heat conductive body is considered. A single set of the temperature and heat flux on the lateral boundary for a fixed observation time is given as an observation datum. It is shown that this datum yields the minimum length of broken paths that start at a given point outside the body, go to a point on the boundary of the unknown discontinuity and return to a point on the boundary of the body under some conditions on the input heat flux, the unknown discontinuity and the body. This is new information obtained by using enclosure method.
Citation: Masaru Ikehata, Mishio Kawashita. An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method. Inverse Problems & Imaging, 2014, 8 (4) : 1073-1116. doi: 10.3934/ipi.2014.8.1073
References:
[1]

K. Bryan and F. L. Caudill, Jr., Uniqueness for a boundary identification problem in thermal imaging,, in Differential Equations and Computational Simulations III (eds. J. Graef, 01 (1998), 23. Google Scholar

[2]

A. P. Calderón, On an inverse boundary value problem,, in Seminar on Numerical Analysis and its Applications to Continuum Physics (eds. W. H. Meyer and M. A. Raupp), (1980), 65. Google Scholar

[3]

B. Canuto, E. Rosset and S. Vessella, Quantitative estimate of unique continuation for parabolic equations and inverse initial-boundary value problems with unknown boundaries,, Trans. Amer. Math. Soc., 354 (2002), 491. doi: 10.1090/S0002-9947-01-02860-4. Google Scholar

[4]

R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for sciences and technology, Evolution problems I,, Vol. 5, 5 (1992). doi: 10.1007/978-3-642-58090-1. Google Scholar

[5]

M. Ikehata, Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data,, Inverse Problems, 15 (1999), 1231. doi: 10.1088/0266-5611/15/5/308. Google Scholar

[6]

M. Ikehata, Reconstruction of the support function for inclusion from boundary measurements,, J. Inv. Ill-Posed Problems, 8 (2000), 367. doi: 10.1515/jiip.2000.8.4.367. Google Scholar

[7]

M. Ikehata, Extracting discontinuity in a heat conductive body. One-space dimensional case,, Applicable Analysis, 86 (2007), 963. doi: 10.1080/00036810701460834. Google Scholar

[8]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/5/055010. Google Scholar

[9]

M. Ikehata, The framework of the enclosure method with dynamical data and its applications,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/6/065005. Google Scholar

[10]

M. Ikehata and M. Kawashita, The enclosure method for the heat equation,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/7/075005. Google Scholar

[11]

M. Ikehata and M. Kawashita, On the reconstruction of inclusions in a heat conductive body from dynamical boundary data over a finite time interval,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/9/095004. Google Scholar

[12]

M. Ikehata and M. Kawashita, Estimates of the integral kernels arising from inverse problems for a three-dimensional heat equation in thermal imaging,, Kyoto J. Math., 54 (2014), 1. doi: 10.1215/21562261-2400265. Google Scholar

[13]

S. Mizohata, Theory of Partial Differential Equations,, Cambridge Univ. Press, (1973). Google Scholar

[14]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153. doi: 10.2307/1971291. Google Scholar

[15]

S. Vessella, Stability estimates in an inverse problem for a three-dimensional heat equation,, SIAM J. Math. Anal., 28 (1997), 1354. doi: 10.1137/S0036141095294262. Google Scholar

[16]

S. Vessella, Quantitative estimates of unique continuation for parabolic equations, determination of unknown time-varying boundaries and optimal stability estimates,, Topical Review, 24 (2008). doi: 10.1088/0266-5611/24/2/023001. Google Scholar

show all references

References:
[1]

K. Bryan and F. L. Caudill, Jr., Uniqueness for a boundary identification problem in thermal imaging,, in Differential Equations and Computational Simulations III (eds. J. Graef, 01 (1998), 23. Google Scholar

[2]

A. P. Calderón, On an inverse boundary value problem,, in Seminar on Numerical Analysis and its Applications to Continuum Physics (eds. W. H. Meyer and M. A. Raupp), (1980), 65. Google Scholar

[3]

B. Canuto, E. Rosset and S. Vessella, Quantitative estimate of unique continuation for parabolic equations and inverse initial-boundary value problems with unknown boundaries,, Trans. Amer. Math. Soc., 354 (2002), 491. doi: 10.1090/S0002-9947-01-02860-4. Google Scholar

[4]

R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for sciences and technology, Evolution problems I,, Vol. 5, 5 (1992). doi: 10.1007/978-3-642-58090-1. Google Scholar

[5]

M. Ikehata, Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data,, Inverse Problems, 15 (1999), 1231. doi: 10.1088/0266-5611/15/5/308. Google Scholar

[6]

M. Ikehata, Reconstruction of the support function for inclusion from boundary measurements,, J. Inv. Ill-Posed Problems, 8 (2000), 367. doi: 10.1515/jiip.2000.8.4.367. Google Scholar

[7]

M. Ikehata, Extracting discontinuity in a heat conductive body. One-space dimensional case,, Applicable Analysis, 86 (2007), 963. doi: 10.1080/00036810701460834. Google Scholar

[8]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/5/055010. Google Scholar

[9]

M. Ikehata, The framework of the enclosure method with dynamical data and its applications,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/6/065005. Google Scholar

[10]

M. Ikehata and M. Kawashita, The enclosure method for the heat equation,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/7/075005. Google Scholar

[11]

M. Ikehata and M. Kawashita, On the reconstruction of inclusions in a heat conductive body from dynamical boundary data over a finite time interval,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/9/095004. Google Scholar

[12]

M. Ikehata and M. Kawashita, Estimates of the integral kernels arising from inverse problems for a three-dimensional heat equation in thermal imaging,, Kyoto J. Math., 54 (2014), 1. doi: 10.1215/21562261-2400265. Google Scholar

[13]

S. Mizohata, Theory of Partial Differential Equations,, Cambridge Univ. Press, (1973). Google Scholar

[14]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153. doi: 10.2307/1971291. Google Scholar

[15]

S. Vessella, Stability estimates in an inverse problem for a three-dimensional heat equation,, SIAM J. Math. Anal., 28 (1997), 1354. doi: 10.1137/S0036141095294262. Google Scholar

[16]

S. Vessella, Quantitative estimates of unique continuation for parabolic equations, determination of unknown time-varying boundaries and optimal stability estimates,, Topical Review, 24 (2008). doi: 10.1088/0266-5611/24/2/023001. Google Scholar

[1]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[2]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[3]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems & Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[4]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems & Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[5]

Shao-Yuan Huang, Shin-Hwa Wang. On S-shaped bifurcation curves for a two-point boundary value problem arising in a theory of thermal explosion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4839-4858. doi: 10.3934/dcds.2015.35.4839

[6]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[7]

Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems & Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042

[8]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

[9]

Masaru Ikehata. On finding an obstacle with the Leontovich boundary condition via the time domain enclosure method. Inverse Problems & Imaging, 2017, 11 (1) : 99-123. doi: 10.3934/ipi.2017006

[10]

Sergei A. Avdonin, Sergei A. Ivanov, Jun-Min Wang. Inverse problems for the heat equation with memory. Inverse Problems & Imaging, 2019, 13 (1) : 31-38. doi: 10.3934/ipi.2019002

[11]

Changming Song, Hong Li, Jina Li. Initial boundary value problem for the singularly perturbed Boussinesq-type equation. Conference Publications, 2013, 2013 (special) : 709-717. doi: 10.3934/proc.2013.2013.709

[12]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[13]

Umberto Biccari. Boundary controllability for a one-dimensional heat equation with a singular inverse-square potential. Mathematical Control & Related Fields, 2019, 9 (1) : 191-219. doi: 10.3934/mcrf.2019011

[14]

Masaru Ikehata. The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain. Inverse Problems & Imaging, 2016, 10 (1) : 131-163. doi: 10.3934/ipi.2016.10.131

[15]

Eemeli Blåsten, Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials. Inverse Problems & Imaging, 2015, 9 (3) : 709-723. doi: 10.3934/ipi.2015.9.709

[16]

Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control & Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014

[17]

Sergei Avdonin, Fritz Gesztesy, Konstantin A. Makarov. Spectral estimation and inverse initial boundary value problems. Inverse Problems & Imaging, 2010, 4 (1) : 1-9. doi: 10.3934/ipi.2010.4.1

[18]

Fenglong Qu, Jiaqing Yang. On recovery of an inhomogeneous cavity in inverse acoustic scattering. Inverse Problems & Imaging, 2018, 12 (2) : 281-291. doi: 10.3934/ipi.2018012

[19]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[20]

Yacheng Liu, Runzhang Xu. Potential well method for initial boundary value problem of the generalized double dispersion equations. Communications on Pure & Applied Analysis, 2008, 7 (1) : 63-81. doi: 10.3934/cpaa.2008.7.63

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]