May  2013, 7(2): 445-470. doi: 10.3934/ipi.2013.7.445

Far field model for time reversal and application to selective focusing on small dielectric inhomogeneities

1. 

Inria (CORIDA Team), Villers-lès-Nancy, F-54600, France

2. 

Mathematics Department, US Naval Academy, 572C Holloway Road, Annapolis, MD 21402-5002, United States

3. 

Université de Lorraine, IECL, UMR 7502, Vandoeuvre-les-Nancy, F-54506, France

Received  November 2011 Revised  February 2013 Published  May 2013

Based on the time-harmonic far field model for small dielectric inclusions in $3$D, we study the so-called DORT method (DORT is the French acronym for ``Diagonalization of the Time Reversal Operator''). The main observation is to relate the eigenfunctions of the time-reversal operator to the location of small scattering inclusions. For non penetrable sound-soft acoustic scatterers, this observation has been rigorously proved for $2$ and $3$ dimensions by Hazard and Ramdani in [21] for small scatterers. In this work, we consider the case of small dielectric inclusions with far field measurements. The main difference with the acoustic case is related to the magnetic permeability and the related polarization tensors. We show that in the regime $kd\rightarrow \infty$ ($k$ denotes here the wavenumber and $d$ the minimal distance between the scatterers), each inhomogeneity gives rise to -at most- 4 distinct eigenvalues (one due to the electric contrast and three to the magnetic one) while each corresponding eigenfunction generates an incident wave focusing selectively on one of the scatterers. The method has connections to the MUSIC algorithm known in Signal Processing and the Factorization Method of Kirsch.
Citation: Corinna Burkard, Aurelia Minut, Karim Ramdani. Far field model for time reversal and application to selective focusing on small dielectric inhomogeneities. Inverse Problems & Imaging, 2013, 7 (2) : 445-470. doi: 10.3934/ipi.2013.7.445
References:
[1]

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,", 55 of National Bureau of Standards Applied Mathematics Series, 55 (1964). Google Scholar

[2]

H. Ammari, E. Iakovleva, D. Lesselier and G. Perrusson, Music-type electromagnetic imaging of a collection of small three-dimensional inclusions,, SIAM J. Sci. Comput., 29 (2007), 674. doi: 10.1137/050640655. Google Scholar

[3]

H. Ammari, E. Iakovleva and S. Moskow, Recovery of small inhomogeneities from the scattering amplitude at a fixed frequency,, SIAM J. Math. Anal., 34 (2003), 882. doi: 10.1137/S0036141001392785. Google Scholar

[4]

X. Antoine, B. Pinçon, K. Ramdani and B. Thierry, Far field modeling of electromagnetic time reversal and application to selective focusing on small scatterers,, SIAM J. Appl. Math., 69 (2008), 830. doi: 10.1137/080715779. Google Scholar

[5]

T. Arens, A. Lechleiter and D. R. Luke, Music for extended scatterers as an instance of the factorization method,, SIAM J. Appl. Math., 70 (2009), 1283. doi: 10.1137/080737836. Google Scholar

[6]

C. Ben Amar, N. Gmati, C. Hazard and K. Ramdani, Numerical simulation of acoustic time reversal mirrors,, SIAM J. Appl. Math., 67 (2007), 777. doi: 10.1137/060654542. Google Scholar

[7]

L. Borcea, G. Papanicolaou and F. G. Vasquez, Edge illumination and imaging of extended reflectors,, SIAM J. Imaging Sciences, 1 (2008), 75. doi: 10.1137/07069290X. Google Scholar

[8]

L. Borcea, G. Papanicolaou and F. G. Vasquez, Edge illumination and imaging of extended reflectors,, SIAM J. Imaging Sciences, 1 (2008), 75. doi: 10.1137/07069290X. Google Scholar

[9]

D. H. Chambers and J. G. Berryman, Target characterization using decomposition of the time-reversal operator: Electromagnetic scattering from small ellipsoids,, Inverse Problems, 22 (2006), 2145. doi: 10.1088/0266-5611/22/6/014. Google Scholar

[10]

Q. Chen, H. Haddar, A. Lechleiter and P. Monk, A sampling method for inverse scattering in the time domain,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/8/085001. Google Scholar

[11]

M. Cheney, The linear sampling method and the {MUSIC algorithm},, Inverse Problems, 17 (2001), 591. doi: 10.1088/0266-5611/17/4/301. Google Scholar

[12]

D. Colton, H. Haddar and M. Piana, The linear sampling method in inverse electromagnetic scattering theory,, Inverse Problems, 19 (2003). doi: 10.1088/0266-5611/19/6/057. Google Scholar

[13]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region,, Inverse Problems, 12 (1996), 383. doi: 10.1088/0266-5611/12/4/003. Google Scholar

[14]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory,", Springer-Verlag, (1998). Google Scholar

[15]

A. Devaney, E. Marengo and F. Gruber, Time-reversal-based imaging and inverse scattering of multiply scattering point targets,, J. Acoust. Soc. Amer., 118 (2005), 3129. doi: 10.1121/1.2042987. Google Scholar

[16]

A. Fannjiang, On time reversal mirrors,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/9/095010. Google Scholar

[17]

M. Fink, Acoustic time-reversal mirrors,, in, (2002), 17. Google Scholar

[18]

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter and J.-L. Thomas, Time-reversed acoustics,, Rep. Prog. Phys., 63 (2000), 1933. Google Scholar

[19]

M. Fink and C. Prada, Acoustic time-reversal mirrors,, Inverse Problems, 17 (2001), 1761. Google Scholar

[20]

N. A. Gumerov and R. Duraiswami, Computation scattering from n spheres using multipole reexpansion,, J. Acoust. Soc. Amer., 112 (2002), 2688. doi: 10.1121/1.1517253. Google Scholar

[21]

C. Hazard and K. Ramdani, Selective acoustic focusing using time-harmonic reversal mirrors,, SIAM J. Appl. Math., 64 (2004), 1057. doi: 10.1137/S0036139903428732. Google Scholar

[22]

S. Hou, K. Solna and H. Zhao, Imaging of location and geometry for extended targets using the response matrix,, J. Comput. Phys., 199 (2004), 317. doi: 10.1016/j.jcp.2004.02.010. Google Scholar

[23]

E. Iakovleva and D. Lesselier, Multistatic response matrix of spherical scatterers and the back-propagation of singular fields,, IEEE Trans. Antenna. Prop., 56 (2008), 825. doi: 10.1109/TAP.2008.916913. Google Scholar

[24]

A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator,, Inverse Problems, 14 (1998), 1489. doi: 10.1088/0266-5611/14/6/009. Google Scholar

[25]

A. Kirsch, Factorization of the far-field operator for the inhomogeneous medium case and an application in inverse scattering theory,, Inverse Problems, 15 (1999), 413. doi: 10.1088/0266-5611/15/2/005. Google Scholar

[26]

A. Kirsch, New characterizations of solutions in inverse scattering theory,, Appl. Anal., 76 (2000), 319. doi: 10.1080/00036810008840888. Google Scholar

[27]

A. Kirsch, The MUSIC algorithm and the factorization method in inverse scattering theory for inhomogeneous media,, Inverse Problems, 18 (2002), 1025. doi: 10.1088/0266-5611/18/4/306. Google Scholar

[28]

R. Kress, Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering,, Quart. J. Mech. Appl. Math., 38 (1985), 323. doi: 10.1093/qjmam/38.2.323. Google Scholar

[29]

G. Micolau, "Etude Théorique et Numérique de la Méthode de la Décomposition de L'opérateur de Retournement Temporel (D.O.R.T.) en Diffraction ÉlectromagnÉtique,", Ph.D thesis, (2001). Google Scholar

[30]

B. Pinçon and K. Ramdani, Selective focusing on small scatterers in acoustic waveguides using time reversal mirrors,, Inverse Problems, 23 (2007), 1. doi: 10.1088/0266-5611/23/1/001. Google Scholar

[31]

C. Prada, S. Manneville, D. Spoliansky and M. Fink, Decomposition of the time reversal operator: Detection and selective focusing on two scatterers,, J. Acoust. Soc. Am., 99 (1996), 2067. doi: 10.1121/1.415393. Google Scholar

[32]

E. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,", Princeton University Press, (1993). Google Scholar

[33]

B. Thierry, "Analyse et Simulations Numériques du Retournement Temporel et de la Diffraction Multiple,", Ph.D thesis, (2011). Google Scholar

[34]

H. Tortel, G. Micolau and M. Saillard, Decomposition of the time reversal operator for electromagnetic scattering,, J. Electromagn. Waves Appl., 13 (1999), 687. doi: 10.1163/156939399X01113. Google Scholar

[35]

R. Wong, "Asymptotic Approximations of Integrals,", 34 of Classics in Applied Mathematics, 34 (2001). doi: 10.1137/1.9780898719260. Google Scholar

[36]

A. Zaanen, "Linear Analysis. Measure and Integral, Banach and Hilbert Space, Linear Integral Equations,", Interscience Publishers Inc., (1953). Google Scholar

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,", 55 of National Bureau of Standards Applied Mathematics Series, 55 (1964). Google Scholar

[2]

H. Ammari, E. Iakovleva, D. Lesselier and G. Perrusson, Music-type electromagnetic imaging of a collection of small three-dimensional inclusions,, SIAM J. Sci. Comput., 29 (2007), 674. doi: 10.1137/050640655. Google Scholar

[3]

H. Ammari, E. Iakovleva and S. Moskow, Recovery of small inhomogeneities from the scattering amplitude at a fixed frequency,, SIAM J. Math. Anal., 34 (2003), 882. doi: 10.1137/S0036141001392785. Google Scholar

[4]

X. Antoine, B. Pinçon, K. Ramdani and B. Thierry, Far field modeling of electromagnetic time reversal and application to selective focusing on small scatterers,, SIAM J. Appl. Math., 69 (2008), 830. doi: 10.1137/080715779. Google Scholar

[5]

T. Arens, A. Lechleiter and D. R. Luke, Music for extended scatterers as an instance of the factorization method,, SIAM J. Appl. Math., 70 (2009), 1283. doi: 10.1137/080737836. Google Scholar

[6]

C. Ben Amar, N. Gmati, C. Hazard and K. Ramdani, Numerical simulation of acoustic time reversal mirrors,, SIAM J. Appl. Math., 67 (2007), 777. doi: 10.1137/060654542. Google Scholar

[7]

L. Borcea, G. Papanicolaou and F. G. Vasquez, Edge illumination and imaging of extended reflectors,, SIAM J. Imaging Sciences, 1 (2008), 75. doi: 10.1137/07069290X. Google Scholar

[8]

L. Borcea, G. Papanicolaou and F. G. Vasquez, Edge illumination and imaging of extended reflectors,, SIAM J. Imaging Sciences, 1 (2008), 75. doi: 10.1137/07069290X. Google Scholar

[9]

D. H. Chambers and J. G. Berryman, Target characterization using decomposition of the time-reversal operator: Electromagnetic scattering from small ellipsoids,, Inverse Problems, 22 (2006), 2145. doi: 10.1088/0266-5611/22/6/014. Google Scholar

[10]

Q. Chen, H. Haddar, A. Lechleiter and P. Monk, A sampling method for inverse scattering in the time domain,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/8/085001. Google Scholar

[11]

M. Cheney, The linear sampling method and the {MUSIC algorithm},, Inverse Problems, 17 (2001), 591. doi: 10.1088/0266-5611/17/4/301. Google Scholar

[12]

D. Colton, H. Haddar and M. Piana, The linear sampling method in inverse electromagnetic scattering theory,, Inverse Problems, 19 (2003). doi: 10.1088/0266-5611/19/6/057. Google Scholar

[13]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region,, Inverse Problems, 12 (1996), 383. doi: 10.1088/0266-5611/12/4/003. Google Scholar

[14]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory,", Springer-Verlag, (1998). Google Scholar

[15]

A. Devaney, E. Marengo and F. Gruber, Time-reversal-based imaging and inverse scattering of multiply scattering point targets,, J. Acoust. Soc. Amer., 118 (2005), 3129. doi: 10.1121/1.2042987. Google Scholar

[16]

A. Fannjiang, On time reversal mirrors,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/9/095010. Google Scholar

[17]

M. Fink, Acoustic time-reversal mirrors,, in, (2002), 17. Google Scholar

[18]

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter and J.-L. Thomas, Time-reversed acoustics,, Rep. Prog. Phys., 63 (2000), 1933. Google Scholar

[19]

M. Fink and C. Prada, Acoustic time-reversal mirrors,, Inverse Problems, 17 (2001), 1761. Google Scholar

[20]

N. A. Gumerov and R. Duraiswami, Computation scattering from n spheres using multipole reexpansion,, J. Acoust. Soc. Amer., 112 (2002), 2688. doi: 10.1121/1.1517253. Google Scholar

[21]

C. Hazard and K. Ramdani, Selective acoustic focusing using time-harmonic reversal mirrors,, SIAM J. Appl. Math., 64 (2004), 1057. doi: 10.1137/S0036139903428732. Google Scholar

[22]

S. Hou, K. Solna and H. Zhao, Imaging of location and geometry for extended targets using the response matrix,, J. Comput. Phys., 199 (2004), 317. doi: 10.1016/j.jcp.2004.02.010. Google Scholar

[23]

E. Iakovleva and D. Lesselier, Multistatic response matrix of spherical scatterers and the back-propagation of singular fields,, IEEE Trans. Antenna. Prop., 56 (2008), 825. doi: 10.1109/TAP.2008.916913. Google Scholar

[24]

A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator,, Inverse Problems, 14 (1998), 1489. doi: 10.1088/0266-5611/14/6/009. Google Scholar

[25]

A. Kirsch, Factorization of the far-field operator for the inhomogeneous medium case and an application in inverse scattering theory,, Inverse Problems, 15 (1999), 413. doi: 10.1088/0266-5611/15/2/005. Google Scholar

[26]

A. Kirsch, New characterizations of solutions in inverse scattering theory,, Appl. Anal., 76 (2000), 319. doi: 10.1080/00036810008840888. Google Scholar

[27]

A. Kirsch, The MUSIC algorithm and the factorization method in inverse scattering theory for inhomogeneous media,, Inverse Problems, 18 (2002), 1025. doi: 10.1088/0266-5611/18/4/306. Google Scholar

[28]

R. Kress, Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering,, Quart. J. Mech. Appl. Math., 38 (1985), 323. doi: 10.1093/qjmam/38.2.323. Google Scholar

[29]

G. Micolau, "Etude Théorique et Numérique de la Méthode de la Décomposition de L'opérateur de Retournement Temporel (D.O.R.T.) en Diffraction ÉlectromagnÉtique,", Ph.D thesis, (2001). Google Scholar

[30]

B. Pinçon and K. Ramdani, Selective focusing on small scatterers in acoustic waveguides using time reversal mirrors,, Inverse Problems, 23 (2007), 1. doi: 10.1088/0266-5611/23/1/001. Google Scholar

[31]

C. Prada, S. Manneville, D. Spoliansky and M. Fink, Decomposition of the time reversal operator: Detection and selective focusing on two scatterers,, J. Acoust. Soc. Am., 99 (1996), 2067. doi: 10.1121/1.415393. Google Scholar

[32]

E. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,", Princeton University Press, (1993). Google Scholar

[33]

B. Thierry, "Analyse et Simulations Numériques du Retournement Temporel et de la Diffraction Multiple,", Ph.D thesis, (2011). Google Scholar

[34]

H. Tortel, G. Micolau and M. Saillard, Decomposition of the time reversal operator for electromagnetic scattering,, J. Electromagn. Waves Appl., 13 (1999), 687. doi: 10.1163/156939399X01113. Google Scholar

[35]

R. Wong, "Asymptotic Approximations of Integrals,", 34 of Classics in Applied Mathematics, 34 (2001). doi: 10.1137/1.9780898719260. Google Scholar

[36]

A. Zaanen, "Linear Analysis. Measure and Integral, Banach and Hilbert Space, Linear Integral Equations,", Interscience Publishers Inc., (1953). Google Scholar

[1]

Kenrick Bingham, Yaroslav Kurylev, Matti Lassas, Samuli Siltanen. Iterative time-reversal control for inverse problems. Inverse Problems & Imaging, 2008, 2 (1) : 63-81. doi: 10.3934/ipi.2008.2.63

[2]

Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems & Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757

[3]

Huai-An Diao, Peijun Li, Xiaokai Yuan. Inverse elastic surface scattering with far-field data. Inverse Problems & Imaging, 2019, 13 (4) : 721-744. doi: 10.3934/ipi.2019033

[4]

Huey-Er Lin, Jian-Guo Liu, Wen-Qing Xu. Effects of small viscosity and far field boundary conditions for hyperbolic systems. Communications on Pure & Applied Analysis, 2004, 3 (2) : 267-290. doi: 10.3934/cpaa.2004.3.267

[5]

Batoul Abdelaziz, Abdellatif El Badia, Ahmad El Hajj. Some remarks on the small electromagnetic inhomogeneities reconstruction problem. Inverse Problems & Imaging, 2017, 11 (6) : 1027-1046. doi: 10.3934/ipi.2017047

[6]

Benoît Pausader, Walter A. Strauss. Analyticity of the nonlinear scattering operator. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 617-626. doi: 10.3934/dcds.2009.25.617

[7]

Roland Griesmaier, Nuutti Hyvönen, Otto Seiskari. A note on analyticity properties of far field patterns. Inverse Problems & Imaging, 2013, 7 (2) : 491-498. doi: 10.3934/ipi.2013.7.491

[8]

Rodrigo I. Brevis, Jaime H. Ortega, David Pardo. A source time reversal method for seismicity induced by mining. Inverse Problems & Imaging, 2017, 11 (1) : 25-45. doi: 10.3934/ipi.2017002

[9]

Rodica Toader. Scattering in domains with many small obstacles. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 321-338. doi: 10.3934/dcds.1998.4.321

[10]

Peter C. Gibson. On the measurement operator for scattering in layered media. Inverse Problems & Imaging, 2017, 11 (1) : 87-97. doi: 10.3934/ipi.2017005

[11]

Anudeep Kumar Arora. Scattering of radial data in the focusing NLS and generalized Hartree Equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6643-6668. doi: 10.3934/dcds.2019289

[12]

Zhigang Wang. Vanishing viscosity limit of the rotating shallow water equations with far field vacuum. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 311-328. doi: 10.3934/dcds.2018015

[13]

Olha Ivanyshyn. Shape reconstruction of acoustic obstacles from the modulus of the far field pattern. Inverse Problems & Imaging, 2007, 1 (4) : 609-622. doi: 10.3934/ipi.2007.1.609

[14]

Giovanni Alessandrini, Eva Sincich, Sergio Vessella. Stable determination of surface impedance on a rough obstacle by far field data. Inverse Problems & Imaging, 2013, 7 (2) : 341-351. doi: 10.3934/ipi.2013.7.341

[15]

Qi Wang, Yanren Hou. Determining an obstacle by far-field data measured at a few spots. Inverse Problems & Imaging, 2015, 9 (2) : 591-600. doi: 10.3934/ipi.2015.9.591

[16]

Julien Chambarel, Christian Kharif, Olivier Kimmoun. Focusing wave group in shallow water in the presence of wind. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 773-782. doi: 10.3934/dcdsb.2010.13.773

[17]

Albert Fannjiang, Knut Solna. Time reversal of parabolic waves and two-frequency Wigner distribution. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 783-802. doi: 10.3934/dcdsb.2006.6.783

[18]

Kazufumi Ito, Karim Ramdani, Marius Tucsnak. A time reversal based algorithm for solving initial data inverse problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 641-652. doi: 10.3934/dcdss.2011.4.641

[19]

Masaru Ikehata. The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain. Inverse Problems & Imaging, 2016, 10 (1) : 131-163. doi: 10.3934/ipi.2016.10.131

[20]

Teemu Tyni, Valery Serov. Scattering problems for perturbations of the multidimensional biharmonic operator. Inverse Problems & Imaging, 2018, 12 (1) : 205-227. doi: 10.3934/ipi.2018008

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]