November  2013, 7(4): 1367-1377. doi: 10.3934/ipi.2013.7.1367

Instability of the linearized problem in multiwave tomography of recovery both the source and the speed

1. 

Department of Mathematics, Purdue University, 150 N University Street, West Lafayette, IN 47907

2. 

Department of Mathematics, University of Washington, Seattle, WA 98195-4350

Received  January 2013 Revised  October 2013 Published  November 2013

In this paper we consider the linearized problem of recovering both the sound speed and the thermal absorption arising in thermoacoustic and photoacoustic tomography. We show that the problem is unstable in any scale of Sobolev spaces.
Citation: Plamen Stefanov, Gunther Uhlmann. Instability of the linearized problem in multiwave tomography of recovery both the source and the speed. Inverse Problems & Imaging, 2013, 7 (4) : 1367-1377. doi: 10.3934/ipi.2013.7.1367
References:
[1]

G. Ambartsoumian, R. Gouia-Zarrad and M. A. Lewis, Inversion of the circular Radon transform on an annulus,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/10/105015. Google Scholar

[2]

M. Agranovsky, P. Kuchment and L. Kunyansky, On Reconstruction Formulas and Algorithms for the Thermoacoustic Tomography,, Photoacoustic Imaging and Spectroscopy, (2009), 89. doi: 10.1201/9781420059922.ch8. Google Scholar

[3]

D. Finch, M. Haltmeier and Rakesh, Inversion of spherical means and the wave equation in even dimensions,, SIAM J. Appl. Math., 68 (2007), 392. doi: 10.1137/070682137. Google Scholar

[4]

D. Finch, S. K. Patch and Rakesh, Determining a function from its mean values over a family of spheres,, SIAM J. Math. Anal., 35 (2004), 1213. doi: 10.1137/S0036141002417814. Google Scholar

[5]

D. Finch and Rakesh, The range of the spherical mean value operator for functions supported in a ball,, Inverse Problems, 22 (2006), 923. doi: 10.1088/0266-5611/22/3/012. Google Scholar

[6]

D. Finch and Rakesh, Recovering a function from its spherical mean values in two and three dimensions,, in Photoacoustic Imaging and Spectroscopy, (2009). doi: 10.1201/9781420059922.pt3. Google Scholar

[7]

Y. Hristova, P. Kuchment and L. Nguyen, Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media,, Inverse Problems, 24 (2008). doi: 10.1088/0266-5611/24/5/055006. Google Scholar

[8]

Y. Hristova, Time reversal in thermoacoustic tomography-an error estimate,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/5/055008. Google Scholar

[9]

M. Haltmeier, O. Scherzer, P. Burgholzer and G. Paltauf, Thermoacoustic computed tomography with large planar receivers,, Inverse Problems, 20 (2004), 1663. doi: 10.1088/0266-5611/20/5/021. Google Scholar

[10]

M. Haltmeier, T. Schuster and O. Scherzer, Filtered backprojection for thermoacoustic computed tomography in spherical geometry,, Math. Methods Appl. Sci., 28 (2005), 1919. doi: 10.1002/mma.648. Google Scholar

[11]

V. Isakov, Inverse Problems for Partial Differential Equations,, second ed., (2006). Google Scholar

[12]

J. Jose, Rene G. H. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen and S. Manohar, Speed-of-sound compensated photoacoustic tomography for accurate imaging,, , (). doi: 10.1118/1.4764911. Google Scholar

[13]

P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic tomography,, European J. Appl. Math., 19 (2008), 191. doi: 10.1017/S0956792508007353. Google Scholar

[14]

R. A Kruger, W. L. Kiser, D. R. Reinecke and G. A. Kruger, Thermoacoustic computed tomography using a conventional linear transducer array,, Med. Phys., 30 (2003), 856. doi: 10.1118/1.1565340. Google Scholar

[15]

R. A. Kruger, D. R. Reinecke and G. A. Kruger, Thermoacoustic computed tomography-technical considerations,, Med. Phys., 26 (1999), 1832. doi: 10.1118/1.598688. Google Scholar

[16]

I. Lasiecka, J.-L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl., 65 (1986), 149. Google Scholar

[17]

S. K. Patch, Thermoacoustic tomography - consistency conditions and the partial scan problem,, Physics in Medicine and Biology, 49 (2004), 2305. doi: 10.1201/9781420059922.ch9. Google Scholar

[18]

J. Qian, P. Stefanov, G. Uhlmann and H. Zhao, An efficient neumann-series based algorithm for thermoacoustic and photoacoustic tomography with variable sound speed,, SIAM J. Imaging Sciences, (2011), 850. doi: 10.1137/100817280. Google Scholar

[19]

V. A. Sharafutdinov, Integral Geometry of Tensor Fields,, Inverse and Ill-posed Problems Series, (1994). doi: 10.1515/9783110900095. Google Scholar

[20]

P. Stefanov and G. Uhlmann, Linearizing non-linear inverse problems and an application to inverse backscattering,, J. Funct. Anal., 256 (2009), 2842. doi: 10.1016/j.jfa.2008.10.017. Google Scholar

[21]

______, Thermoacoustic tomography with variable sound speed,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/7/075011. Google Scholar

[22]

______, Thermoacoustic tomography arising in brain imaging,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/4/045004. Google Scholar

[23]

P. Stefanov and G. Uhlmann, Multi-wave methods via ultrasound,, MSRI Publications, 60 (2012), 271. Google Scholar

[24]

P. Stefanov and G. Uhlmann, Recovery of a source term or a speed with one measurement and applications,, Trans. Amer. Math. Soc., 365 (2013), 5737. doi: 10.1090/S0002-9947-2013-05703-0. Google Scholar

[25]

D. Tataru, Unique continuation problems for partial differential equations,, Geometric Methods in Inverse Problems and PDE Control, 137 (2004), 239. doi: 10.1007/978-1-4684-9375-7_8. Google Scholar

[26]

B. E. Treeby, T. K. Varslot, E. Z. Zhang, J. G. Laufer and P. C. Beard, Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach,, Journal of Biomedical Optics, 16 (2011). doi: 10.1117/1.3619139. Google Scholar

[27]

Y. Xu, P. Kuchment and G. Ambartsoumian, Reconstructions in limited view thermoacoustic tomography,, Medical Physics, 31 (2004), 724. doi: 10.1118/1.1644531. Google Scholar

[28]

M. Xu and L. V. Wang, Photoacoustic imaging in biomedicine,, Review of Scientific Instruments, 77 (2006). doi: 10.1063/1.2195024. Google Scholar

[29]

Z. Yuan and H. Jiang, Simultaneous recovery of tissue physiological and acoustic properties and the criteria for wavelength selection in multispectral photoacoustic tomography,, Opt. Lett., 34 (2009), 1714. doi: 10.1364/OL.34.001714. Google Scholar

[30]

Z. Yuan, Q. Zhang and H. Jiang, Simultaneous reconstruction of acoustic and optical properties of heterogeneous media by quantitative photoacoustic tomography,, Opt. Express, 14 (2006), 6749. doi: 10.1364/OE.14.006749. Google Scholar

[31]

J. Zhang and M. A. Anastasio, Reconstruction of speed-of-sound and electromagnetic absorption distributions in photoacoustic tomography,, Proc. SPIE, 6086 (2006). doi: 10.1117/12.647665. Google Scholar

show all references

References:
[1]

G. Ambartsoumian, R. Gouia-Zarrad and M. A. Lewis, Inversion of the circular Radon transform on an annulus,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/10/105015. Google Scholar

[2]

M. Agranovsky, P. Kuchment and L. Kunyansky, On Reconstruction Formulas and Algorithms for the Thermoacoustic Tomography,, Photoacoustic Imaging and Spectroscopy, (2009), 89. doi: 10.1201/9781420059922.ch8. Google Scholar

[3]

D. Finch, M. Haltmeier and Rakesh, Inversion of spherical means and the wave equation in even dimensions,, SIAM J. Appl. Math., 68 (2007), 392. doi: 10.1137/070682137. Google Scholar

[4]

D. Finch, S. K. Patch and Rakesh, Determining a function from its mean values over a family of spheres,, SIAM J. Math. Anal., 35 (2004), 1213. doi: 10.1137/S0036141002417814. Google Scholar

[5]

D. Finch and Rakesh, The range of the spherical mean value operator for functions supported in a ball,, Inverse Problems, 22 (2006), 923. doi: 10.1088/0266-5611/22/3/012. Google Scholar

[6]

D. Finch and Rakesh, Recovering a function from its spherical mean values in two and three dimensions,, in Photoacoustic Imaging and Spectroscopy, (2009). doi: 10.1201/9781420059922.pt3. Google Scholar

[7]

Y. Hristova, P. Kuchment and L. Nguyen, Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media,, Inverse Problems, 24 (2008). doi: 10.1088/0266-5611/24/5/055006. Google Scholar

[8]

Y. Hristova, Time reversal in thermoacoustic tomography-an error estimate,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/5/055008. Google Scholar

[9]

M. Haltmeier, O. Scherzer, P. Burgholzer and G. Paltauf, Thermoacoustic computed tomography with large planar receivers,, Inverse Problems, 20 (2004), 1663. doi: 10.1088/0266-5611/20/5/021. Google Scholar

[10]

M. Haltmeier, T. Schuster and O. Scherzer, Filtered backprojection for thermoacoustic computed tomography in spherical geometry,, Math. Methods Appl. Sci., 28 (2005), 1919. doi: 10.1002/mma.648. Google Scholar

[11]

V. Isakov, Inverse Problems for Partial Differential Equations,, second ed., (2006). Google Scholar

[12]

J. Jose, Rene G. H. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen and S. Manohar, Speed-of-sound compensated photoacoustic tomography for accurate imaging,, , (). doi: 10.1118/1.4764911. Google Scholar

[13]

P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic tomography,, European J. Appl. Math., 19 (2008), 191. doi: 10.1017/S0956792508007353. Google Scholar

[14]

R. A Kruger, W. L. Kiser, D. R. Reinecke and G. A. Kruger, Thermoacoustic computed tomography using a conventional linear transducer array,, Med. Phys., 30 (2003), 856. doi: 10.1118/1.1565340. Google Scholar

[15]

R. A. Kruger, D. R. Reinecke and G. A. Kruger, Thermoacoustic computed tomography-technical considerations,, Med. Phys., 26 (1999), 1832. doi: 10.1118/1.598688. Google Scholar

[16]

I. Lasiecka, J.-L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl., 65 (1986), 149. Google Scholar

[17]

S. K. Patch, Thermoacoustic tomography - consistency conditions and the partial scan problem,, Physics in Medicine and Biology, 49 (2004), 2305. doi: 10.1201/9781420059922.ch9. Google Scholar

[18]

J. Qian, P. Stefanov, G. Uhlmann and H. Zhao, An efficient neumann-series based algorithm for thermoacoustic and photoacoustic tomography with variable sound speed,, SIAM J. Imaging Sciences, (2011), 850. doi: 10.1137/100817280. Google Scholar

[19]

V. A. Sharafutdinov, Integral Geometry of Tensor Fields,, Inverse and Ill-posed Problems Series, (1994). doi: 10.1515/9783110900095. Google Scholar

[20]

P. Stefanov and G. Uhlmann, Linearizing non-linear inverse problems and an application to inverse backscattering,, J. Funct. Anal., 256 (2009), 2842. doi: 10.1016/j.jfa.2008.10.017. Google Scholar

[21]

______, Thermoacoustic tomography with variable sound speed,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/7/075011. Google Scholar

[22]

______, Thermoacoustic tomography arising in brain imaging,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/4/045004. Google Scholar

[23]

P. Stefanov and G. Uhlmann, Multi-wave methods via ultrasound,, MSRI Publications, 60 (2012), 271. Google Scholar

[24]

P. Stefanov and G. Uhlmann, Recovery of a source term or a speed with one measurement and applications,, Trans. Amer. Math. Soc., 365 (2013), 5737. doi: 10.1090/S0002-9947-2013-05703-0. Google Scholar

[25]

D. Tataru, Unique continuation problems for partial differential equations,, Geometric Methods in Inverse Problems and PDE Control, 137 (2004), 239. doi: 10.1007/978-1-4684-9375-7_8. Google Scholar

[26]

B. E. Treeby, T. K. Varslot, E. Z. Zhang, J. G. Laufer and P. C. Beard, Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach,, Journal of Biomedical Optics, 16 (2011). doi: 10.1117/1.3619139. Google Scholar

[27]

Y. Xu, P. Kuchment and G. Ambartsoumian, Reconstructions in limited view thermoacoustic tomography,, Medical Physics, 31 (2004), 724. doi: 10.1118/1.1644531. Google Scholar

[28]

M. Xu and L. V. Wang, Photoacoustic imaging in biomedicine,, Review of Scientific Instruments, 77 (2006). doi: 10.1063/1.2195024. Google Scholar

[29]

Z. Yuan and H. Jiang, Simultaneous recovery of tissue physiological and acoustic properties and the criteria for wavelength selection in multispectral photoacoustic tomography,, Opt. Lett., 34 (2009), 1714. doi: 10.1364/OL.34.001714. Google Scholar

[30]

Z. Yuan, Q. Zhang and H. Jiang, Simultaneous reconstruction of acoustic and optical properties of heterogeneous media by quantitative photoacoustic tomography,, Opt. Express, 14 (2006), 6749. doi: 10.1364/OE.14.006749. Google Scholar

[31]

J. Zhang and M. A. Anastasio, Reconstruction of speed-of-sound and electromagnetic absorption distributions in photoacoustic tomography,, Proc. SPIE, 6086 (2006). doi: 10.1117/12.647665. Google Scholar

[1]

Linh V. Nguyen. A family of inversion formulas in thermoacoustic tomography. Inverse Problems & Imaging, 2009, 3 (4) : 649-675. doi: 10.3934/ipi.2009.3.649

[2]

Plamen Stefanov, Yang Yang. Multiwave tomography with reflectors: Landweber's iteration. Inverse Problems & Imaging, 2017, 11 (2) : 373-401. doi: 10.3934/ipi.2017018

[3]

Victor Palamodov. Remarks on the general Funk transform and thermoacoustic tomography. Inverse Problems & Imaging, 2010, 4 (4) : 693-702. doi: 10.3934/ipi.2010.4.693

[4]

Leonid Kunyansky. Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries. Inverse Problems & Imaging, 2012, 6 (1) : 111-131. doi: 10.3934/ipi.2012.6.111

[5]

Shui-Nee Chow, Ke Yin, Hao-Min Zhou, Ali Behrooz. Solving inverse source problems by the Orthogonal Solution and Kernel Correction Algorithm (OSKCA) with applications in fluorescence tomography. Inverse Problems & Imaging, 2014, 8 (1) : 79-102. doi: 10.3934/ipi.2014.8.79

[6]

Herbert Egger, Manuel Freiberger, Matthias Schlottbom. On forward and inverse models in fluorescence diffuse optical tomography. Inverse Problems & Imaging, 2010, 4 (3) : 411-427. doi: 10.3934/ipi.2010.4.411

[7]

Jan Boman, Vladimir Sharafutdinov. Stability estimates in tensor tomography. Inverse Problems & Imaging, 2018, 12 (5) : 1245-1262. doi: 10.3934/ipi.2018052

[8]

Tim Kreutzmann, Andreas Rieder. Geometric reconstruction in bioluminescence tomography. Inverse Problems & Imaging, 2014, 8 (1) : 173-197. doi: 10.3934/ipi.2014.8.173

[9]

Plamen Stefanov, Wenxiang Cong, Ge Wang. Modulated luminescence tomography. Inverse Problems & Imaging, 2015, 9 (2) : 579-589. doi: 10.3934/ipi.2015.9.579

[10]

Fabrice Delbary, Rainer Kress. Electrical impedance tomography using a point electrode inverse scheme for complete electrode data. Inverse Problems & Imaging, 2011, 5 (2) : 355-369. doi: 10.3934/ipi.2011.5.355

[11]

Hiroshi Isozaki. Inverse boundary value problems in the horosphere - A link between hyperbolic geometry and electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (1) : 107-134. doi: 10.3934/ipi.2007.1.107

[12]

Mikko Kaasalainen. Dynamical tomography of gravitationally bound systems. Inverse Problems & Imaging, 2008, 2 (4) : 527-546. doi: 10.3934/ipi.2008.2.527

[13]

Peter Kuchment, Leonid Kunyansky. Synthetic focusing in ultrasound modulated tomography. Inverse Problems & Imaging, 2010, 4 (4) : 665-673. doi: 10.3934/ipi.2010.4.665

[14]

Bastian Gebauer. Localized potentials in electrical impedance tomography. Inverse Problems & Imaging, 2008, 2 (2) : 251-269. doi: 10.3934/ipi.2008.2.251

[15]

Peijun Li, Ganghua Yuan. Increasing stability for the inverse source scattering problem with multi-frequencies. Inverse Problems & Imaging, 2017, 11 (4) : 745-759. doi: 10.3934/ipi.2017035

[16]

Kenichi Sakamoto, Masahiro Yamamoto. Inverse source problem with a final overdetermination for a fractional diffusion equation. Mathematical Control & Related Fields, 2011, 1 (4) : 509-518. doi: 10.3934/mcrf.2011.1.509

[17]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[18]

Yuxuan Gong, Xiang Xu. Inverse random source problem for biharmonic equation in two dimensions. Inverse Problems & Imaging, 2019, 13 (3) : 635-652. doi: 10.3934/ipi.2019029

[19]

Lars Lamberg, Lauri Ylinen. Two-Dimensional tomography with unknown view angles. Inverse Problems & Imaging, 2007, 1 (4) : 623-642. doi: 10.3934/ipi.2007.1.623

[20]

Kari Astala, Jennifer L. Mueller, Lassi Päivärinta, Allan Perämäki, Samuli Siltanen. Direct electrical impedance tomography for nonsmooth conductivities. Inverse Problems & Imaging, 2011, 5 (3) : 531-549. doi: 10.3934/ipi.2011.5.531

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]