August  2012, 6(3): 531-546. doi: 10.3934/ipi.2012.6.531

Non rigid geometric distortions correction - Application to atmospheric turbulence stabilization

1. 

Institute for Mathematics and Its Applications, University of Minnesota, 425 Lind Hall 207 Church Street SE, Minneapolis, MN 55455-0134, United States

2. 

Department of Mathematics, University of California Los Angeles, 520 Portola Plaza, Los Angeles, CA 90095-1555, United States

Received  July 2011 Revised  January 2012 Published  September 2012

A novel approach is presented to recover an image degraded by atmospheric turbulence. Given a sequence of frames affected by turbulence, we construct a variational model to characterize the static image. The optimization problem is solved by Bregman Iteration and the operator splitting method. Our algorithm is simple, efficient, and can be easily generalized for different scenarios.
Citation: Yu Mao, Jérôme Gilles. Non rigid geometric distortions correction - Application to atmospheric turbulence stabilization. Inverse Problems & Imaging, 2012, 6 (3) : 531-546. doi: 10.3934/ipi.2012.6.531
References:
[1]

M. S. C. Almeida and L. B. Almeida, Blind and semi-blind deblurring of natural images,, IEEE Transactions on Image Processing, 19 (2010), 36. doi: 10.1109/TIP.2009.2031231. Google Scholar

[2]

M. Aubailly, M. A. Vorontsov, G. W. Carhat and M. T. Valley, "Automated Video Enhancement from a Stream of Atmospherically-Distorted Images: the Lucky-Region Fusion Approach,", Proceedings of SPIE, 7463 (2009). Google Scholar

[3]

M. J. Black and P. Anandan, The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields,, Comput Vision and Image Understanding, 63 (1996), 75. doi: 10.1006/cviu.1996.0006. Google Scholar

[4]

J. Y. Bouguet, "Pyramidal Implementation of the Lucas Kanade Feature Tracker Description of the Algorithm," Intel Corporation Microprocessor Research Labs,, 2000. Available from: , (). Google Scholar

[5]

A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one,, Multiscale Model Sim, 4 (2005), 490. Google Scholar

[6]

J. F. Cai, S. Osher and Z. Shen, Linearized Bregman iterations for frame-based image deblurring,, SIAM Journal on Imaging Sciences, 2 (2009), 226. Google Scholar

[7]

J. F. Cai, S. Osher and Z. Shen, Split Bregman methods and frame based image restoration,, Multiscale Modeling and Simulation, 8 (2009), 337. Google Scholar

[8]

T. F. Chan and C. K. Wong, Convergence of the alternating minimization algorithm for blind deconvolution,, Linear Algebra Appl., 316 (2000), 259. doi: 10.1016/S0024-3795(00)00141-5. Google Scholar

[9]

T. F. Chan, A. M. Yip and F. E. Park, Simultaneous total variation image inpainting and blind deconvolution,, International Journal of Imaging Systems and Technology, 15 (2005), 92. doi: 10.1002/ima.20041. Google Scholar

[10]

P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting,, Multiscale Model Sim., 4 (2005), 1168. Google Scholar

[11]

D. Frakes, J. Monaco and M. Smith, "Suppression of Atmospheric Turbulence in Video Using an Adaptive Control Grid Interpolation Approach,", Proceedings of the IEEE International Conference on Acoustics, (2001). Google Scholar

[12]

S. Gepshtein, A. Shteinman and B. Fishbain, "Restoration of Atmospheric Turbulent Video Containing Real Motion Using Rank Filtering and Elastic Image Registration,", Proceedings of the Eusipco, (2004). Google Scholar

[13]

G. Gilboa and S. Osher, Nonlocal operators with applications to image processing,, Multiscale Model Sim., 7 (2008), 1005. Google Scholar

[14]

J. Gilles, T. Dagobert and C. De Franchis, Atmospheric turbulence restoration by diffeomorphic image registration and blind deconvolution,, in, (2008). Google Scholar

[15]

D. Goldfarb and W. Yin, Parametric maximum flow algorithms for fast total variation minimization,, SIAM J. Sci. Comput., 31 (2009), 3712. doi: 10.1137/070706318. Google Scholar

[16]

T. Goldstein and S. Osher, The split Bregman method for L1 regularized problems,, SIAM Journal on Imaging Sciences, 2 (2009), 323. Google Scholar

[17]

L. He, A. Marquina and S. Osher, Blind deconvolution using TV regularization and Bregman iteration,, International Journal of Imaging Systems and Technology, 15 (2005), 74. doi: 10.1002/ima.20040. Google Scholar

[18]

M. Hirsch, S. Sra, B. Scholkopf and S. Harmeling, "Efficient Filter Flow for Space-variant Multiframe Blind Deconvolution,", Computer Vision and Pattern Recognition Conference, (2010). Google Scholar

[19]

M. Lemaitre, "Etude de la Turbulence Atmosphérique en Vision Horizontale Lointaine et Restauration de Séquences Dégradées Dans le Visible et L'infrarouge,'', Ph. D Thesis, (2007). Google Scholar

[20]

D. Li, R. M. Mersereau and S. Simske, Atmospheric turbulence-degraded image restoration using principal components analysis,, IEEE Geoscience and Remote Sensing Letters, 4 (2007), 340. Google Scholar

[21]

P. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators,, SIAM Journal on Numerical Analysis, 16 (1979), 964. doi: 10.1137/0716071. Google Scholar

[22]

Y. Mao, B. P. Fahimian, S. Osher and J. Miao, Development and optimization of regularized tomographic reconstruction algorithms utilizing equally-sloped tomography,, IEEE Transactions on Image Processing, 19 (2010), 1259. doi: 10.1109/TIP.2009.2039660. Google Scholar

[23]

S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, An iterative regularization method for total variation-based image restoration,, Multiscale Model Sim., 4 (2005), 460. Google Scholar

[24]

G. B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space,, J. Math. Anal. Appl., 72 (1979), 383. doi: 10.1016/0022-247X(79)90234-8. Google Scholar

[25]

L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Physica D: Nonlinear Phenomena, 60 (1992), 259. doi: 10.1016/0167-2789(92)90242-F. Google Scholar

[26]

D. Sun, S. Roth, J. Lewis and M. J. Black, "Learning Optical Flow,", Computer Vision-ECCV, (2008). Google Scholar

[27]

M. Tahtali, A. Lambert and D. Fraser, "Self-tuning Kalman Filter Estimation of Atmospheric Warp,", Proceedings of SPIE, (2008). Google Scholar

[28]

X. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction,, SIAM Journal on Imaging Sciences, 3 (2010), 253. Google Scholar

[29]

X. Zhang, M. Burger and S. Osher, A unified primal-dual algorithm framework based on Bregman iteration,, Journal of Scientific Computing, 46 (2010), 1. Google Scholar

[30]

X. Zhu and P. Milanfar, "Image Reconstruction from Videos Distorted by Atmospheric Turbulence,", SPIE Electronic Imaging, (7543). Google Scholar

show all references

References:
[1]

M. S. C. Almeida and L. B. Almeida, Blind and semi-blind deblurring of natural images,, IEEE Transactions on Image Processing, 19 (2010), 36. doi: 10.1109/TIP.2009.2031231. Google Scholar

[2]

M. Aubailly, M. A. Vorontsov, G. W. Carhat and M. T. Valley, "Automated Video Enhancement from a Stream of Atmospherically-Distorted Images: the Lucky-Region Fusion Approach,", Proceedings of SPIE, 7463 (2009). Google Scholar

[3]

M. J. Black and P. Anandan, The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields,, Comput Vision and Image Understanding, 63 (1996), 75. doi: 10.1006/cviu.1996.0006. Google Scholar

[4]

J. Y. Bouguet, "Pyramidal Implementation of the Lucas Kanade Feature Tracker Description of the Algorithm," Intel Corporation Microprocessor Research Labs,, 2000. Available from: , (). Google Scholar

[5]

A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one,, Multiscale Model Sim, 4 (2005), 490. Google Scholar

[6]

J. F. Cai, S. Osher and Z. Shen, Linearized Bregman iterations for frame-based image deblurring,, SIAM Journal on Imaging Sciences, 2 (2009), 226. Google Scholar

[7]

J. F. Cai, S. Osher and Z. Shen, Split Bregman methods and frame based image restoration,, Multiscale Modeling and Simulation, 8 (2009), 337. Google Scholar

[8]

T. F. Chan and C. K. Wong, Convergence of the alternating minimization algorithm for blind deconvolution,, Linear Algebra Appl., 316 (2000), 259. doi: 10.1016/S0024-3795(00)00141-5. Google Scholar

[9]

T. F. Chan, A. M. Yip and F. E. Park, Simultaneous total variation image inpainting and blind deconvolution,, International Journal of Imaging Systems and Technology, 15 (2005), 92. doi: 10.1002/ima.20041. Google Scholar

[10]

P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting,, Multiscale Model Sim., 4 (2005), 1168. Google Scholar

[11]

D. Frakes, J. Monaco and M. Smith, "Suppression of Atmospheric Turbulence in Video Using an Adaptive Control Grid Interpolation Approach,", Proceedings of the IEEE International Conference on Acoustics, (2001). Google Scholar

[12]

S. Gepshtein, A. Shteinman and B. Fishbain, "Restoration of Atmospheric Turbulent Video Containing Real Motion Using Rank Filtering and Elastic Image Registration,", Proceedings of the Eusipco, (2004). Google Scholar

[13]

G. Gilboa and S. Osher, Nonlocal operators with applications to image processing,, Multiscale Model Sim., 7 (2008), 1005. Google Scholar

[14]

J. Gilles, T. Dagobert and C. De Franchis, Atmospheric turbulence restoration by diffeomorphic image registration and blind deconvolution,, in, (2008). Google Scholar

[15]

D. Goldfarb and W. Yin, Parametric maximum flow algorithms for fast total variation minimization,, SIAM J. Sci. Comput., 31 (2009), 3712. doi: 10.1137/070706318. Google Scholar

[16]

T. Goldstein and S. Osher, The split Bregman method for L1 regularized problems,, SIAM Journal on Imaging Sciences, 2 (2009), 323. Google Scholar

[17]

L. He, A. Marquina and S. Osher, Blind deconvolution using TV regularization and Bregman iteration,, International Journal of Imaging Systems and Technology, 15 (2005), 74. doi: 10.1002/ima.20040. Google Scholar

[18]

M. Hirsch, S. Sra, B. Scholkopf and S. Harmeling, "Efficient Filter Flow for Space-variant Multiframe Blind Deconvolution,", Computer Vision and Pattern Recognition Conference, (2010). Google Scholar

[19]

M. Lemaitre, "Etude de la Turbulence Atmosphérique en Vision Horizontale Lointaine et Restauration de Séquences Dégradées Dans le Visible et L'infrarouge,'', Ph. D Thesis, (2007). Google Scholar

[20]

D. Li, R. M. Mersereau and S. Simske, Atmospheric turbulence-degraded image restoration using principal components analysis,, IEEE Geoscience and Remote Sensing Letters, 4 (2007), 340. Google Scholar

[21]

P. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators,, SIAM Journal on Numerical Analysis, 16 (1979), 964. doi: 10.1137/0716071. Google Scholar

[22]

Y. Mao, B. P. Fahimian, S. Osher and J. Miao, Development and optimization of regularized tomographic reconstruction algorithms utilizing equally-sloped tomography,, IEEE Transactions on Image Processing, 19 (2010), 1259. doi: 10.1109/TIP.2009.2039660. Google Scholar

[23]

S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, An iterative regularization method for total variation-based image restoration,, Multiscale Model Sim., 4 (2005), 460. Google Scholar

[24]

G. B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space,, J. Math. Anal. Appl., 72 (1979), 383. doi: 10.1016/0022-247X(79)90234-8. Google Scholar

[25]

L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Physica D: Nonlinear Phenomena, 60 (1992), 259. doi: 10.1016/0167-2789(92)90242-F. Google Scholar

[26]

D. Sun, S. Roth, J. Lewis and M. J. Black, "Learning Optical Flow,", Computer Vision-ECCV, (2008). Google Scholar

[27]

M. Tahtali, A. Lambert and D. Fraser, "Self-tuning Kalman Filter Estimation of Atmospheric Warp,", Proceedings of SPIE, (2008). Google Scholar

[28]

X. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction,, SIAM Journal on Imaging Sciences, 3 (2010), 253. Google Scholar

[29]

X. Zhang, M. Burger and S. Osher, A unified primal-dual algorithm framework based on Bregman iteration,, Journal of Scientific Computing, 46 (2010), 1. Google Scholar

[30]

X. Zhu and P. Milanfar, "Image Reconstruction from Videos Distorted by Atmospheric Turbulence,", SPIE Electronic Imaging, (7543). Google Scholar

[1]

Xiaoqun Zhang, Tony F. Chan. Wavelet inpainting by nonlocal total variation. Inverse Problems & Imaging, 2010, 4 (1) : 191-210. doi: 10.3934/ipi.2010.4.191

[2]

Chunlin Wu, Juyong Zhang, Xue-Cheng Tai. Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Problems & Imaging, 2011, 5 (1) : 237-261. doi: 10.3934/ipi.2011.5.237

[3]

Adriana González, Laurent Jacques, Christophe De Vleeschouwer, Philippe Antoine. Compressive optical deflectometric tomography: A constrained total-variation minimization approach. Inverse Problems & Imaging, 2014, 8 (2) : 421-457. doi: 10.3934/ipi.2014.8.421

[4]

Ke Chen, Yiqiu Dong, Michael Hintermüller. A nonlinear multigrid solver with line Gauss-Seidel-semismooth-Newton smoother for the Fenchel pre-dual in total variation based image restoration. Inverse Problems & Imaging, 2011, 5 (2) : 323-339. doi: 10.3934/ipi.2011.5.323

[5]

Rinaldo M. Colombo, Francesca Monti. Solutions with large total variation to nonconservative hyperbolic systems. Communications on Pure & Applied Analysis, 2010, 9 (1) : 47-60. doi: 10.3934/cpaa.2010.9.47

[6]

Lukas F. Lang, Otmar Scherzer. Optical flow on evolving sphere-like surfaces. Inverse Problems & Imaging, 2017, 11 (2) : 305-338. doi: 10.3934/ipi.2017015

[7]

Thomas Schuster, Joachim Weickert. On the application of projection methods for computing optical flow fields. Inverse Problems & Imaging, 2007, 1 (4) : 673-690. doi: 10.3934/ipi.2007.1.673

[8]

Aniello Raffaele Patrone, Otmar Scherzer. On a spatial-temporal decomposition of optical flow. Inverse Problems & Imaging, 2017, 11 (4) : 761-781. doi: 10.3934/ipi.2017036

[9]

Yunho Kim, Paul M. Thompson, Luminita A. Vese. HARDI data denoising using vectorial total variation and logarithmic barrier. Inverse Problems & Imaging, 2010, 4 (2) : 273-310. doi: 10.3934/ipi.2010.4.273

[10]

Sören Bartels, Marijo Milicevic. Iterative finite element solution of a constrained total variation regularized model problem. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1207-1232. doi: 10.3934/dcdss.2017066

[11]

Yunhai Xiao, Junfeng Yang, Xiaoming Yuan. Alternating algorithms for total variation image reconstruction from random projections. Inverse Problems & Imaging, 2012, 6 (3) : 547-563. doi: 10.3934/ipi.2012.6.547

[12]

Juan C. Moreno, V. B. Surya Prasath, João C. Neves. Color image processing by vectorial total variation with gradient channels coupling. Inverse Problems & Imaging, 2016, 10 (2) : 461-497. doi: 10.3934/ipi.2016008

[13]

Liyan Ma, Lionel Moisan, Jian Yu, Tieyong Zeng. A stable method solving the total variation dictionary model with $L^\infty$ constraints. Inverse Problems & Imaging, 2014, 8 (2) : 507-535. doi: 10.3934/ipi.2014.8.507

[14]

Lu Liu, Zhi-Feng Pang, Yuping Duan. Retinex based on exponent-type total variation scheme. Inverse Problems & Imaging, 2018, 12 (5) : 1199-1217. doi: 10.3934/ipi.2018050

[15]

Florian Krügel. Some properties of minimizers of a variational problem involving the total variation functional. Communications on Pure & Applied Analysis, 2015, 14 (1) : 341-360. doi: 10.3934/cpaa.2015.14.341

[16]

Zhengmeng Jin, Chen Zhou, Michael K. Ng. A coupled total variation model with curvature driven for image colorization. Inverse Problems & Imaging, 2016, 10 (4) : 1037-1055. doi: 10.3934/ipi.2016031

[17]

Yuyuan Ouyang, Yunmei Chen, Ying Wu. Total variation and wavelet regularization of orientation distribution functions in diffusion MRI. Inverse Problems & Imaging, 2013, 7 (2) : 565-583. doi: 10.3934/ipi.2013.7.565

[18]

Johnathan M. Bardsley. An efficient computational method for total variation-penalized Poisson likelihood estimation. Inverse Problems & Imaging, 2008, 2 (2) : 167-185. doi: 10.3934/ipi.2008.2.167

[19]

Konstantinos Papafitsoros, Kristian Bredies. A study of the one dimensional total generalised variation regularisation problem. Inverse Problems & Imaging, 2015, 9 (2) : 511-550. doi: 10.3934/ipi.2015.9.511

[20]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2019024

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (17)

Other articles
by authors

[Back to Top]