August  2012, 6(3): 523-530. doi: 10.3934/ipi.2012.6.523

Nowhere conformally homogeneous manifolds and limiting Carleman weights

1. 

Department of Mathematics and Systems Analysis, Aalto University, P.O. Box 11100 FI-00076 Aalto, Finland

2. 

Department of Mathematics and Statistics, University of Helsinki and University of Jyväskylä, P.O. Box 35 FI-40014 Jyväskylä, Finland

Received  September 2010 Revised  July 2012 Published  September 2012

In this note we prove that a generic Riemannian manifold of dimension $\geq 3$ does not admit any nontrivial local conformal diffeomorphisms. This is a conformal analogue of a result of Sunada concerning local isometries, and makes precise the principle that generic manifolds in high dimensions do not have conformal symmetries. Consequently, generic manifolds of dimension $\geq 3$ do not admit nontrivial conformal Killing vector fields near any point. As an application to the inverse problem of Calderón on manifolds, this implies that generic manifolds of dimension $\geq 3$ do not admit limiting Carleman weights near any point.
Citation: Tony Liimatainen, Mikko Salo. Nowhere conformally homogeneous manifolds and limiting Carleman weights. Inverse Problems & Imaging, 2012, 6 (3) : 523-530. doi: 10.3934/ipi.2012.6.523
References:
[1]

R. Abraham, Bumpy metrics,, in, (1970), 1. Google Scholar

[2]

D. V. Anosov, Generic properties of closed geodesics,, Izv. Akad. Nauk SSSR Ser. Mat., 46 (1982), 657. Google Scholar

[3]

S. Bando and H. Urakawa, Generic properties of the eigenvalue of the Laplacian for compact Riemannian manifolds,, Tôhoku Math. J., 35 (1983), 155. doi: 10.2748/tmj/1178229047. Google Scholar

[4]

M. Berger, Sur les groupes d'holonomie homogène des variétés à connexion affine et des variétés riemanniennes,, Bull. Soc. Math. France, 83 (1955), 279. Google Scholar

[5]

T. Branson, A. Čap, M. Eastwood and A. R. Gover, Prolongations of geometric overdetermined systems,, Internat. J. Math., 17 (2006), 641. doi: 10.1142/S0129167X06003655. Google Scholar

[6]

A.-P. Calderón, On an inverse boundary value problem,, in, (1980), 65. Google Scholar

[7]

D. Dos Santos Ferreira, C. E. Kenig, M. Salo and G. Uhlmann, Limiting Carleman weights and anisotropic inverse problems,, Invent. Math., 178 (2009), 119. doi: 10.1007/s00222-009-0196-4. Google Scholar

[8]

A. R. Gover, Laplacian operators and Q-curvature on conformally Einstein manifolds,, Math. Ann., 336 (2006), 311. doi: 10.1007/s00208-006-0004-z. Google Scholar

[9]

A. R. Gover and J. Šilhan, The conformal Killing equation on forms -prolongations and applications,, Differential Geom. Appl., 26 (2008), 244. Google Scholar

[10]

C. Guillarmou and A. Sá Barreto, Inverse problems for Einstein manifolds,, Inverse Probl. Imaging, 3 (2009), 1. doi: 10.3934/ipi.2009.3.1. Google Scholar

[11]

C. E. Kenig, M. Salo and G. Uhlmann, Inverse problems for the anisotropic Maxwell equations,, Duke Math. J., 157 (2011), 369. doi: 10.1215/00127094-1272903. Google Scholar

[12]

C. E. Kenig, J. Sjöstrand and G. Uhlmann, The Calderón problem with partial data,, Ann. of Math., 165 (2007), 567. doi: 10.4007/annals.2007.165.567. Google Scholar

[13]

W. Klingenberg and F. Takens, Generic properties of geodesic flows,, Math. Ann., 197 (1972), 323. doi: 10.1007/BF01428204. Google Scholar

[14]

M. Lassas, M. Taylor and G. Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary,, Comm. Anal. Geom., 11 (2003), 207. Google Scholar

[15]

M. Lassas and G. Uhlmann, On determining a Riemannian manifold from the Dirichlet-to-Neumann map,, Ann. Sci. École Norm. Sup. (4), 34 (2001), 771. Google Scholar

[16]

J. Lee and G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements,, Comm. Pure Appl. Math., 42 (1989), 1097. doi: 10.1002/cpa.3160420804. Google Scholar

[17]

J. Lelong-Ferrand, Geometrical interpretation of scalar curvature and regularity of conformal homeomorphisms,, in, (1976), 91. Google Scholar

[18]

Yu. G. Nikonorov, E. D. Rodionov and V. V. Slavskiĭ, Geometry of homogeneous Riemannian manifolds,, J. Math. Sci. (N. Y.), 146 (2007), 6313. doi: 10.1007/s10958-007-0472-z. Google Scholar

[19]

H. L. Royden, "Real Analysis,", The Macmillan Co., (1963). Google Scholar

[20]

A. Sard, The measure of the critical values of differentiable maps,, Bull. Amer. Math. Soc., 48 (1942), 883. doi: 10.1090/S0002-9904-1942-07811-6. Google Scholar

[21]

D. J. Saunders, "The Geometry of Jet Bundles,", London Mathematical Society Lecture Note Series, 142 (1989). Google Scholar

[22]

U. Semmelmann, "Conformal Killing Forms on Riemannian Manifolds,", Habilitation, (2001). Google Scholar

[23]

T. Sunada, Riemannian coverings and isospectral manifolds,, Ann. of Math. (2), 121 (1985), 169. doi: 10.2307/1971195. Google Scholar

[24]

M. E. Taylor, Existence and regularity of isometries,, Trans. Amer. Math. Soc., 358 (2006), 2415. doi: 10.1090/S0002-9947-06-04090-6. Google Scholar

[25]

K. Uhlenbeck, Generic properties of eigenfunctions,, Amer. Math. J., 98 (1976), 1059. doi: 10.2307/2374041. Google Scholar

[26]

G. Uhlmann, Electrical impedance tomography and Calderón's problem,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/12/123011. Google Scholar

show all references

References:
[1]

R. Abraham, Bumpy metrics,, in, (1970), 1. Google Scholar

[2]

D. V. Anosov, Generic properties of closed geodesics,, Izv. Akad. Nauk SSSR Ser. Mat., 46 (1982), 657. Google Scholar

[3]

S. Bando and H. Urakawa, Generic properties of the eigenvalue of the Laplacian for compact Riemannian manifolds,, Tôhoku Math. J., 35 (1983), 155. doi: 10.2748/tmj/1178229047. Google Scholar

[4]

M. Berger, Sur les groupes d'holonomie homogène des variétés à connexion affine et des variétés riemanniennes,, Bull. Soc. Math. France, 83 (1955), 279. Google Scholar

[5]

T. Branson, A. Čap, M. Eastwood and A. R. Gover, Prolongations of geometric overdetermined systems,, Internat. J. Math., 17 (2006), 641. doi: 10.1142/S0129167X06003655. Google Scholar

[6]

A.-P. Calderón, On an inverse boundary value problem,, in, (1980), 65. Google Scholar

[7]

D. Dos Santos Ferreira, C. E. Kenig, M. Salo and G. Uhlmann, Limiting Carleman weights and anisotropic inverse problems,, Invent. Math., 178 (2009), 119. doi: 10.1007/s00222-009-0196-4. Google Scholar

[8]

A. R. Gover, Laplacian operators and Q-curvature on conformally Einstein manifolds,, Math. Ann., 336 (2006), 311. doi: 10.1007/s00208-006-0004-z. Google Scholar

[9]

A. R. Gover and J. Šilhan, The conformal Killing equation on forms -prolongations and applications,, Differential Geom. Appl., 26 (2008), 244. Google Scholar

[10]

C. Guillarmou and A. Sá Barreto, Inverse problems for Einstein manifolds,, Inverse Probl. Imaging, 3 (2009), 1. doi: 10.3934/ipi.2009.3.1. Google Scholar

[11]

C. E. Kenig, M. Salo and G. Uhlmann, Inverse problems for the anisotropic Maxwell equations,, Duke Math. J., 157 (2011), 369. doi: 10.1215/00127094-1272903. Google Scholar

[12]

C. E. Kenig, J. Sjöstrand and G. Uhlmann, The Calderón problem with partial data,, Ann. of Math., 165 (2007), 567. doi: 10.4007/annals.2007.165.567. Google Scholar

[13]

W. Klingenberg and F. Takens, Generic properties of geodesic flows,, Math. Ann., 197 (1972), 323. doi: 10.1007/BF01428204. Google Scholar

[14]

M. Lassas, M. Taylor and G. Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary,, Comm. Anal. Geom., 11 (2003), 207. Google Scholar

[15]

M. Lassas and G. Uhlmann, On determining a Riemannian manifold from the Dirichlet-to-Neumann map,, Ann. Sci. École Norm. Sup. (4), 34 (2001), 771. Google Scholar

[16]

J. Lee and G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements,, Comm. Pure Appl. Math., 42 (1989), 1097. doi: 10.1002/cpa.3160420804. Google Scholar

[17]

J. Lelong-Ferrand, Geometrical interpretation of scalar curvature and regularity of conformal homeomorphisms,, in, (1976), 91. Google Scholar

[18]

Yu. G. Nikonorov, E. D. Rodionov and V. V. Slavskiĭ, Geometry of homogeneous Riemannian manifolds,, J. Math. Sci. (N. Y.), 146 (2007), 6313. doi: 10.1007/s10958-007-0472-z. Google Scholar

[19]

H. L. Royden, "Real Analysis,", The Macmillan Co., (1963). Google Scholar

[20]

A. Sard, The measure of the critical values of differentiable maps,, Bull. Amer. Math. Soc., 48 (1942), 883. doi: 10.1090/S0002-9904-1942-07811-6. Google Scholar

[21]

D. J. Saunders, "The Geometry of Jet Bundles,", London Mathematical Society Lecture Note Series, 142 (1989). Google Scholar

[22]

U. Semmelmann, "Conformal Killing Forms on Riemannian Manifolds,", Habilitation, (2001). Google Scholar

[23]

T. Sunada, Riemannian coverings and isospectral manifolds,, Ann. of Math. (2), 121 (1985), 169. doi: 10.2307/1971195. Google Scholar

[24]

M. E. Taylor, Existence and regularity of isometries,, Trans. Amer. Math. Soc., 358 (2006), 2415. doi: 10.1090/S0002-9947-06-04090-6. Google Scholar

[25]

K. Uhlenbeck, Generic properties of eigenfunctions,, Amer. Math. J., 98 (1976), 1059. doi: 10.2307/2374041. Google Scholar

[26]

G. Uhlmann, Electrical impedance tomography and Calderón's problem,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/12/123011. Google Scholar

[1]

Patrick Foulon, Vladimir S. Matveev. Zermelo deformation of finsler metrics by killing vector fields. Electronic Research Announcements, 2018, 25: 1-7. doi: 10.3934/era.2018.25.001

[2]

Firas Hindeleh, Gerard Thompson. Killing's equations for invariant metrics on Lie groups. Journal of Geometric Mechanics, 2011, 3 (3) : 323-335. doi: 10.3934/jgm.2011.3.323

[3]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[4]

Panos K. Palamides, Alex P. Palamides. Singular boundary value problems, via Sperner's lemma. Conference Publications, 2007, 2007 (Special) : 814-823. doi: 10.3934/proc.2007.2007.814

[5]

Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063

[6]

Chao Wang, Dingbian Qian, Qihuai Liu. Impact oscillators of Hill's type with indefinite weight: Periodic and chaotic dynamics. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2305-2328. doi: 10.3934/dcds.2016.36.2305

[7]

Gianluca Gorni, Gaetano Zampieri. Nonlocal and nonvariational extensions of Killing-type equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 675-689. doi: 10.3934/dcdss.2018042

[8]

Shaobo Gan. A generalized shadowing lemma. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 627-632. doi: 10.3934/dcds.2002.8.627

[9]

Simon Lloyd. On the Closing Lemma problem for the torus. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 951-962. doi: 10.3934/dcds.2009.25.951

[10]

Lan Wen. The selecting Lemma of Liao. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 159-175. doi: 10.3934/dcds.2008.20.159

[11]

Eva Miranda, Romero Solha. A Poincaré lemma in geometric quantisation. Journal of Geometric Mechanics, 2013, 5 (4) : 473-491. doi: 10.3934/jgm.2013.5.473

[12]

Lok Ming Lui, Chengfeng Wen, Xianfeng Gu. A conformal approach for surface inpainting. Inverse Problems & Imaging, 2013, 7 (3) : 863-884. doi: 10.3934/ipi.2013.7.863

[13]

Emmanuel Hebey. The Lin-Ni's conjecture for vector-valued Schrödinger equations in the closed case. Communications on Pure & Applied Analysis, 2010, 9 (4) : 955-962. doi: 10.3934/cpaa.2010.9.955

[14]

Xiao Wen, Xiongping Dai. A note on a sifting-type lemma. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 879-884. doi: 10.3934/dcds.2013.33.879

[15]

Lan Wen. A uniform $C^1$ connecting lemma. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 257-265. doi: 10.3934/dcds.2002.8.257

[16]

Peter Haïssinsky, Kevin M. Pilgrim. Examples of coarse expanding conformal maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2403-2416. doi: 10.3934/dcds.2012.32.2403

[17]

Zuxing Xuan. On conformal measures of parabolic meromorphic functions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 249-257. doi: 10.3934/dcdsb.2015.20.249

[18]

Nicholas Hoell, Guillaume Bal. Ray transforms on a conformal class of curves. Inverse Problems & Imaging, 2014, 8 (1) : 103-125. doi: 10.3934/ipi.2014.8.103

[19]

Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039

[20]

Tim Alderson, Alessandro Neri. Maximum weight spectrum codes. Advances in Mathematics of Communications, 2019, 13 (1) : 101-119. doi: 10.3934/amc.2019006

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]