• Previous Article
    Identification of a real constant in linear evolution equations in Hilbert spaces
  • IPI Home
  • This Issue
  • Next Article
    Solving an inverse problem for the wave equation by using a minimization algorithm and time-reversed measurements
August  2011, 5(3): 715-730. doi: 10.3934/ipi.2011.5.715

Inverse boundary value problems for discrete Schrödinger operators on the multi-dimensional square lattice

1. 

Graduate school of pure and applied sciences, University of Tsukuba, Tennnoudai 1-1-1, Tsukuba, Ibaraki, 305-0821, Japan

Received  August 2010 Revised  May 2011 Published  August 2011

We consider an inverse boundary value problem for a discrete Schrödinger operator $-\Delta + \hat{q} $ on a bounded domain in the square lattice. We define an analogue of the Dirichlet-to-Neumann map, and give a reconstruction procedure of the potential $\hat{q} $ from the D-to-N map for all energies.
Citation: Hisashi Morioka. Inverse boundary value problems for discrete Schrödinger operators on the multi-dimensional square lattice. Inverse Problems & Imaging, 2011, 5 (3) : 715-730. doi: 10.3934/ipi.2011.5.715
References:
[1]

K. Ando, Inverse scattering theory for discrete Schrödinger operators on the hexagonal lattice,, preprint., ().

[2]

L. Borcea, V. Druskin and A. Mamonov, Circular resistor networks for electrical impedance tomography with partial boundary measurements,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/4/045010.

[3]

L. Borcea, V. Druskin, A. Mamonov and F. Guevara Vasquez, Pyramidal resistor networks for electrical impedance tomography with partial boundary measurements,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/10/105009.

[4]

F. R. Chung, "Spectral Graph Theory,", CBMS Regional Conference Series in Mathematics, 92 (1997).

[5]

E. Curtis and J. Morrow, The Dirichlet to Neumann map for a resistor network,, SIAM J. Appl. Math., 51 (1991), 1011. doi: 10.1137/0151051.

[6]

E. Curtis, E. Mooers and J. Morrow, Finding the conductors in circular networks from boundary measurements,, RAIRO Modél. Math. Anal. Numér., 28 (1994), 781.

[7]

R. Diestel, "Graph Theory,", 2nd edition, 173 (2000).

[8]

H. Isozaki and E. Korotyaev, Inverse problems, trace formulae for discrete Schrödinger operators,, submitted., ().

[9]

H. Isozaki, Some remarks on the multi-dimensional Borg-Levinson theorem,, J. Math. Kyoto Univ., 31 (1991), 743.

[10]

R. G. Novikov and G. M. Khenkin, The $\overline\partial$-equation in the multidimensional inverse scattering problem,, (Russian) Uspekhi Mat. Nauk, 42 (1987), 93.

[11]

A. I. Nachman, Reconstruction from boundary measurements,, Ann. Math. (2), 128 (1988), 531. doi: 10.2307/1971435.

[12]

A. I. Nachman, J. Sylvester and G. Uhlmann, An $n$-dimensional Borg-Levinson theorem,, Commun. Math. Phys., 115 (1988), 595. doi: 10.1007/BF01224129.

[13]

R. Oberlin, Discrete inverse problems for Schrödinger and resistor networks,, Research archive of Research Experiences for Undergraduates program at Univ. of Washington, (2000).

[14]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. Math. (2), 125 (1987), 153. doi: 10.2307/1971291.

show all references

References:
[1]

K. Ando, Inverse scattering theory for discrete Schrödinger operators on the hexagonal lattice,, preprint., ().

[2]

L. Borcea, V. Druskin and A. Mamonov, Circular resistor networks for electrical impedance tomography with partial boundary measurements,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/4/045010.

[3]

L. Borcea, V. Druskin, A. Mamonov and F. Guevara Vasquez, Pyramidal resistor networks for electrical impedance tomography with partial boundary measurements,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/10/105009.

[4]

F. R. Chung, "Spectral Graph Theory,", CBMS Regional Conference Series in Mathematics, 92 (1997).

[5]

E. Curtis and J. Morrow, The Dirichlet to Neumann map for a resistor network,, SIAM J. Appl. Math., 51 (1991), 1011. doi: 10.1137/0151051.

[6]

E. Curtis, E. Mooers and J. Morrow, Finding the conductors in circular networks from boundary measurements,, RAIRO Modél. Math. Anal. Numér., 28 (1994), 781.

[7]

R. Diestel, "Graph Theory,", 2nd edition, 173 (2000).

[8]

H. Isozaki and E. Korotyaev, Inverse problems, trace formulae for discrete Schrödinger operators,, submitted., ().

[9]

H. Isozaki, Some remarks on the multi-dimensional Borg-Levinson theorem,, J. Math. Kyoto Univ., 31 (1991), 743.

[10]

R. G. Novikov and G. M. Khenkin, The $\overline\partial$-equation in the multidimensional inverse scattering problem,, (Russian) Uspekhi Mat. Nauk, 42 (1987), 93.

[11]

A. I. Nachman, Reconstruction from boundary measurements,, Ann. Math. (2), 128 (1988), 531. doi: 10.2307/1971435.

[12]

A. I. Nachman, J. Sylvester and G. Uhlmann, An $n$-dimensional Borg-Levinson theorem,, Commun. Math. Phys., 115 (1988), 595. doi: 10.1007/BF01224129.

[13]

R. Oberlin, Discrete inverse problems for Schrödinger and resistor networks,, Research archive of Research Experiences for Undergraduates program at Univ. of Washington, (2000).

[14]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. Math. (2), 125 (1987), 153. doi: 10.2307/1971291.

[1]

Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033

[2]

Victor Isakov, Jenn-Nan Wang. Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2014, 8 (4) : 1139-1150. doi: 10.3934/ipi.2014.8.1139

[3]

Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems & Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959

[4]

Victor Isakov. Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 631-640. doi: 10.3934/dcdss.2011.4.631

[5]

Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745

[6]

Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043

[7]

Sombuddha Bhattacharyya. An inverse problem for the magnetic Schrödinger operator on Riemannian manifolds from partial boundary data. Inverse Problems & Imaging, 2018, 12 (3) : 801-830. doi: 10.3934/ipi.2018034

[8]

Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems & Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169

[9]

Ru-Yu Lai. Global uniqueness for an inverse problem for the magnetic Schrödinger operator. Inverse Problems & Imaging, 2011, 5 (1) : 59-73. doi: 10.3934/ipi.2011.5.59

[10]

Kevin Arfi, Anna Rozanova-Pierrat. Dirichlet-to-Neumann or Poincaré-Steklov operator on fractals described by d-sets. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 1-26. doi: 10.3934/dcdss.2019001

[11]

Sunghan Kim, Ki-Ahm Lee, Henrik Shahgholian. Homogenization of the boundary value for the Dirichlet problem. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-22. doi: 10.3934/dcds.2019234

[12]

Ihsane Bikri, Ronald B. Guenther, Enrique A. Thomann. The Dirichlet to Neumann map - An application to the Stokes problem in half space. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 221-230. doi: 10.3934/dcdss.2010.3.221

[13]

Corentin Audiard. On the non-homogeneous boundary value problem for Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3861-3884. doi: 10.3934/dcds.2013.33.3861

[14]

Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201

[15]

Marta García-Huidobro, Raul Manásevich. A three point boundary value problem containing the operator. Conference Publications, 2003, 2003 (Special) : 313-319. doi: 10.3934/proc.2003.2003.313

[16]

Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377

[17]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[18]

Türker Özsarı, Nermin Yolcu. The initial-boundary value problem for the biharmonic Schrödinger equation on the half-line. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3285-3316. doi: 10.3934/cpaa.2019148

[19]

Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295

[20]

Zhongwei Tang. Segregated peak solutions of coupled Schrödinger systems with Neumann boundary conditions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5299-5323. doi: 10.3934/dcds.2014.34.5299

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]