November  2010, 4(4): 639-647. doi: 10.3934/ipi.2010.4.639

Special functions

1. 

Department of Mathematics, Temple University, Philadelphia, PA 19122, United States

Received  March 2009 Published  September 2010

Special functions are functions that show up in several contexts. The most classical special functions are the monomials and the exponential functions. On the next level we find the hypergeometric functions, which appear in such varied contexts as partial differential equations, number theory, and group representations. The standard hypergeometric functions have power series which satisfy 2 term recursion relations. This leads to the usual expressions for the power series coefficients as quotionts of rational and factorial-like expressions. We have developed a "hierarchy" of special functions which satisfy higher order recursion relations. They generalize the classical Mathieu and Lamé functions. These classical functions satisfy 3 term recursion relations and our theory produces "Lamé - like" functions which satisfy recursions of any order.
Citation: Leon Ehrenpreis. Special functions. Inverse Problems & Imaging, 2010, 4 (4) : 639-647. doi: 10.3934/ipi.2010.4.639
References:
[1]

L. Ehrenpreis, "Fourier Analysis in Several Complex Variables,", Wiley & Sons, (1970). Google Scholar

[2]

L. Ehrenpreis, "The Universality of the Radon Transform,", Oxford University Press, (2003). doi: doi:10.1093/acprof:oso/9780198509783.001.0001. Google Scholar

[3]

L. Ehrenpreis, Hypergeometric functions,, in, I (1988), 85. Google Scholar

[4]

H. Farkas and I. Kra, "Riemann Surfaces,", Springer-Verlag, (1992). Google Scholar

[5]

E. W. Hobson, "The Theory of Spherical and Ellipsoidal Harmonics,", Cambridge University Press, (1931). Google Scholar

[6]

E. G. Kalnins, "Separation of Variables for Riemannian Spaces of Constant Curvature,", Longman, (1986). Google Scholar

[7]

W. Miller, Jr., "Symmetry and Separation of Variables,", Addison-Wesley Publ. Co., (1977). Google Scholar

[8]

N. Ja. Vilenkin and A. U. Klimyk, "Representations of Lie Groups and Special Functions,", Kluwer Acad. Publ., (1991). Google Scholar

show all references

References:
[1]

L. Ehrenpreis, "Fourier Analysis in Several Complex Variables,", Wiley & Sons, (1970). Google Scholar

[2]

L. Ehrenpreis, "The Universality of the Radon Transform,", Oxford University Press, (2003). doi: doi:10.1093/acprof:oso/9780198509783.001.0001. Google Scholar

[3]

L. Ehrenpreis, Hypergeometric functions,, in, I (1988), 85. Google Scholar

[4]

H. Farkas and I. Kra, "Riemann Surfaces,", Springer-Verlag, (1992). Google Scholar

[5]

E. W. Hobson, "The Theory of Spherical and Ellipsoidal Harmonics,", Cambridge University Press, (1931). Google Scholar

[6]

E. G. Kalnins, "Separation of Variables for Riemannian Spaces of Constant Curvature,", Longman, (1986). Google Scholar

[7]

W. Miller, Jr., "Symmetry and Separation of Variables,", Addison-Wesley Publ. Co., (1977). Google Scholar

[8]

N. Ja. Vilenkin and A. U. Klimyk, "Representations of Lie Groups and Special Functions,", Kluwer Acad. Publ., (1991). Google Scholar

[1]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: Numerical tests and examples. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 41-74. doi: 10.3934/dcdsb.2010.14.41

[2]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75

[3]

Jacques Wolfmann. Special bent and near-bent functions. Advances in Mathematics of Communications, 2014, 8 (1) : 21-33. doi: 10.3934/amc.2014.8.21

[4]

Chihiro Matsuoka, Koichi Hiraide. Special functions created by Borel-Laplace transform of Hénon map. Electronic Research Announcements, 2011, 18: 1-11. doi: 10.3934/era.2011.18.1

[5]

Krzysztof Frączek, M. Lemańczyk, E. Lesigne. Mild mixing property for special flows under piecewise constant functions. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 691-710. doi: 10.3934/dcds.2007.19.691

[6]

Jiao Du, Longjiang Qu, Chao Li, Xin Liao. Constructing 1-resilient rotation symmetric functions over $ {\mathbb F}_{p} $ with $ {q} $ variables through special orthogonal arrays. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020018

[7]

Frank Sottile. The special Schubert calculus is real. Electronic Research Announcements, 1999, 5: 35-39.

[8]

Genni Fragnelli, Luca Lorenzi, Alain Miranville. Preface to this special issue. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : ⅰ-ⅲ. doi: 10.3934/dcdss.2020080

[9]

Adrian Constantin, Joachim Escher. Introduction to the special issue on hydrodynamic model equations. Communications on Pure & Applied Analysis, 2012, 11 (4) : i-iii. doi: 10.3934/cpaa.2012.11.4i

[10]

Przemysław Berk, Krzysztof Frączek. On special flows over IETs that are not isomorphic to their inverses. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 829-855. doi: 10.3934/dcds.2015.35.829

[11]

Rinaldo M. Colombo, Kenneth H. Karlsen, Frédéric Lagoutière, Andrea Marson. Special issue on contemporary topics in conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : i-ii. doi: 10.3934/nhm.2016.11.2i

[12]

Sze-Bi Hsu, Hal L. Smith, Xiaoqiang Zhao. Special issue dedicated to the memory of Paul Waltman. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : i-ii. doi: 10.3934/dcdsb.2016.21.2i

[13]

Amina Eladdadi, Noura Yousfi, Abdessamad Tridane. Preface: Special issue on cancer modeling, analysis and control. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : i-iii. doi: 10.3934/dcdsb.2013.18.4i

[14]

Angelo Favini, Genni Fragnelli, Luca Lorenzi. Preface to the special issue in memory of Alfredo Lorenzi. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : i-ii. doi: 10.3934/dcdss.201603i

[15]

Maria Alessandra Ragusa, Atsushi Tachikawa. Estimates of the derivatives of minimizers of a special class of variational integrals. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1411-1425. doi: 10.3934/dcds.2011.31.1411

[16]

Andrea L. Bertozzi. Preface to special issue on mathematics of social systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : i-v. doi: 10.3934/dcdsb.2014.19.5i

[17]

Alberto D'Onofrio, Paola Cerrai, Piero Manfredi. Special issue on Erice ‘MathCompEpi 2015’ Proceedings. Mathematical Biosciences & Engineering, 2018, 14 (1) : i-iv. doi: 10.3934/mbe.201801i

[18]

Marek Fila, Hannes Stuke. Special asymptotics for a critical fast diffusion equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 725-735. doi: 10.3934/dcdss.2014.7.725

[19]

Marco Castrillón López, Antonio Fernández, César Rodrigo. A special tribute to Professor Pedro L. García. Journal of Geometric Mechanics, 2013, 5 (4) : i-iii. doi: 10.3934/jgm.2013.5.4i

[20]

Stefan Siegmund, Petr Stehlík. Preface: Special issue on dynamical systems on graphs. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : ⅰ-ⅲ. doi: 10.3934/dcdsb.201805i

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]