
Previous Article
A Newton method for reconstructing non starshaped domains in electrical impedance tomography
 IPI Home
 This Issue

Next Article
Recovering an obstacle using integral equations
An estimate for the free Helmholtz equation that scales
1.  Department of Mathematics, University of Washington, Seattle, Washington 981953540, United States 
[1] 
Michael V. Klibanov. A phaseless inverse scattering problem for the 3D Helmholtz equation. Inverse Problems & Imaging, 2017, 11 (2) : 263276. doi: 10.3934/ipi.2017013 
[2] 
Masaya Maeda, Hironobu Sasaki, Etsuo Segawa, Akito Suzuki, Kanako Suzuki. Scattering and inverse scattering for nonlinear quantum walks. Discrete & Continuous Dynamical Systems  A, 2018, 38 (7) : 36873703. doi: 10.3934/dcds.2018159 
[3] 
Francesco Demontis, Cornelis Van der Mee. Novel formulation of inverse scattering and characterization of scattering data. Conference Publications, 2011, 2011 (Special) : 343350. doi: 10.3934/proc.2011.2011.343 
[4] 
John C. Schotland, Vadim A. Markel. FourierLaplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181188. doi: 10.3934/ipi.2007.1.181 
[5] 
Leonardo Marazzi. Inverse scattering on conformally compact manifolds. Inverse Problems & Imaging, 2009, 3 (3) : 537550. doi: 10.3934/ipi.2009.3.537 
[6] 
Daniel Bouche, Youngjoon Hong, ChangYeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete & Continuous Dynamical Systems  A, 2017, 37 (3) : 11591181. doi: 10.3934/dcds.2017048 
[7] 
Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems & Imaging, 2011, 5 (4) : 793813. doi: 10.3934/ipi.2011.5.793 
[8] 
Fenglong Qu, Jiaqing Yang. On recovery of an inhomogeneous cavity in inverse acoustic scattering. Inverse Problems & Imaging, 2018, 12 (2) : 281291. doi: 10.3934/ipi.2018012 
[9] 
Peter Monk, Jiguang Sun. Inverse scattering using finite elements and gap reciprocity. Inverse Problems & Imaging, 2007, 1 (4) : 643660. doi: 10.3934/ipi.2007.1.643 
[10] 
Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577586. doi: 10.3934/ipi.2008.2.577 
[11] 
Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551565. doi: 10.3934/ipi.2009.3.551 
[12] 
Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291303. doi: 10.3934/ipi.2013.7.291 
[13] 
Miklós Horváth. Spectral shift functions in the fixed energy inverse scattering. Inverse Problems & Imaging, 2011, 5 (4) : 843858. doi: 10.3934/ipi.2011.5.843 
[14] 
Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems & Imaging, 2016, 10 (1) : 263279. doi: 10.3934/ipi.2016.10.263 
[15] 
Masaru Ikehata, Esa Niemi, Samuli Siltanen. Inverse obstacle scattering with limitedaperture data. Inverse Problems & Imaging, 2012, 6 (1) : 7794. doi: 10.3934/ipi.2012.6.77 
[16] 
Gabriel Katz. Causal holography in application to the inverse scattering problems. Inverse Problems & Imaging, 2019, 13 (3) : 597633. doi: 10.3934/ipi.2019028 
[17] 
Peijun Li, Xiaokai Yuan. Inverse obstacle scattering for elastic waves in three dimensions. Inverse Problems & Imaging, 2019, 13 (3) : 545573. doi: 10.3934/ipi.2019026 
[18] 
Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems & Imaging, 2013, 7 (1) : 183197. doi: 10.3934/ipi.2013.7.183 
[19] 
Tan BuiThanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems & Imaging, 2013, 7 (4) : 11391155. doi: 10.3934/ipi.2013.7.1139 
[20] 
Zhiming Chen, Chao Liang, Xueshuang Xiang. An anisotropic perfectly matched layer method for Helmholtz scattering problems with discontinuous wave number. Inverse Problems & Imaging, 2013, 7 (3) : 663678. doi: 10.3934/ipi.2013.7.663 
2018 Impact Factor: 1.469
Tools
Metrics
Other articles
by authors
[Back to Top]