May  2009, 3(2): 243-257. doi: 10.3934/ipi.2009.3.243

Vector ellipsoidal harmonics and neuronal current decomposition in the brain

1. 

Department of Chemical Engineering, University of Patras, Greece, Greece

Received  November 2008 Revised  March 2009 Published  May 2009

Vector ellipsoidal harmonics are introduced here for the first time and their analytic peculiarities, as well as their limitations, are analyzed. A novelty of these vectorial base functions is that we need to introduce two different inner products in order to obtain orthogonality on the surface of any ellipsoid. Furthermore, in contrast to the vector spherical harmonics which are independent of the radial variable, the vector ellipsoidal harmonics can not be defined uniformly over a family of confocal ellipsoids. An expansion theorem is proved which secures completeness of the vectorial harmonics as well as a non-trivial algorithm that determines the coefficients of the expansion. Then, these new functions are used to prove that, for the realistic ellipsoidal model of the human head, there exists a component of the neuronal current that is invisible by the electroencephalographic measurements while it is detectable through magnetoencephalographic measurements in the exterior of the head. Furthermore, in contrast to the case of the sphere, where no part of the current contributes both to the electric potential and to the magnetic field, we prove here that, in the case of the ellipsoid, there is a part of the current that influences the electroencephalographic as well as the magnetoencephalographic recordings.
Citation: George Dassios, Michalis N. Tsampas. Vector ellipsoidal harmonics and neuronal current decomposition in the brain. Inverse Problems & Imaging, 2009, 3 (2) : 243-257. doi: 10.3934/ipi.2009.3.243
[1]

Shruti Agarwal, Gilles Carbou, Stéphane Labbé, Christophe Prieur. Control of a network of magnetic ellipsoidal samples. Mathematical Control & Related Fields, 2011, 1 (2) : 129-147. doi: 10.3934/mcrf.2011.1.129

[2]

Jan Haskovec, Nader Masmoudi, Christian Schmeiser, Mohamed Lazhar Tayeb. The Spherical Harmonics Expansion model coupled to the Poisson equation. Kinetic & Related Models, 2011, 4 (4) : 1063-1079. doi: 10.3934/krm.2011.4.1063

[3]

Seok-Bae Yun. Entropy production for ellipsoidal BGK model of the Boltzmann equation. Kinetic & Related Models, 2016, 9 (3) : 605-619. doi: 10.3934/krm.2016009

[4]

Ruotian Gao, Wenxun Xing. Robust sensitivity analysis for linear programming with ellipsoidal perturbation. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2019041

[5]

Xiangjin Xu. Sub-harmonics of first order Hamiltonian systems and their asymptotic behaviors. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 643-654. doi: 10.3934/dcdsb.2003.3.643

[6]

Amadeu Delshams, Rodrigo G. Schaefer. Arnold diffusion for a complete family of perturbations with two independent harmonics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6047-6072. doi: 10.3934/dcds.2018261

[7]

Annalisa Pascarella, Alberto Sorrentino, Cristina Campi, Michele Piana. Particle filtering, beamforming and multiple signal classification for the analysis of magnetoencephalography time series: a comparison of algorithms. Inverse Problems & Imaging, 2010, 4 (1) : 169-190. doi: 10.3934/ipi.2010.4.169

[8]

Hung-Chu Hsu. Exact azimuthal internal waves with an underlying current. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4391-4398. doi: 10.3934/dcds.2017188

[9]

Sharif E. Guseynov, Eugene A. Kopytov, Edvin Puzinkevich. On continuous models of current stock of divisible productions. Conference Publications, 2011, 2011 (Special) : 601-613. doi: 10.3934/proc.2011.2011.601

[10]

Tatiana Filippova. Differential equations of ellipsoidal state estimates in nonlinear control problems under uncertainty. Conference Publications, 2011, 2011 (Special) : 410-419. doi: 10.3934/proc.2011.2011.410

[11]

Jakub Cupera. Diffusion approximation of neuronal models revisited. Mathematical Biosciences & Engineering, 2014, 11 (1) : 11-25. doi: 10.3934/mbe.2014.11.11

[12]

Siwei Yu, Jianwei Ma, Stanley Osher. Geometric mode decomposition. Inverse Problems & Imaging, 2018, 12 (4) : 831-852. doi: 10.3934/ipi.2018035

[13]

Stefano Bianchini, Daniela Tonon. A decomposition theorem for $BV$ functions. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1549-1566. doi: 10.3934/cpaa.2011.10.1549

[14]

Andrey Olypher, Jean Vaillant. On the properties of input-to-output transformations in neuronal networks. Mathematical Biosciences & Engineering, 2016, 13 (3) : 579-596. doi: 10.3934/mbe.2016009

[15]

Daniele Andreucci, Dario Bellaveglia, Emilio N.M. Cirillo, Silvia Marconi. Effect of intracellular diffusion on current--voltage curves in potassium channels. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1837-1853. doi: 10.3934/dcdsb.2014.19.1837

[16]

Carlos Montalto, Alexandru Tamasan. Stability in conductivity imaging from partial measurements of one interior current. Inverse Problems & Imaging, 2017, 11 (2) : 339-353. doi: 10.3934/ipi.2017016

[17]

Gaël Bonithon. Landau-Lifschitz-Gilbert equation with applied eletric current. Conference Publications, 2007, 2007 (Special) : 138-144. doi: 10.3934/proc.2007.2007.138

[18]

Frank Jochmann. A variational inequality in Bean's model for superconductors with displacement current. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 545-565. doi: 10.3934/dcds.2009.25.545

[19]

Fredi Tröltzsch, Alberto Valli. Optimal voltage control of non-stationary eddy current problems. Mathematical Control & Related Fields, 2018, 8 (1) : 35-56. doi: 10.3934/mcrf.2018002

[20]

Lei Yang, Xiao-Ping Wang. Dynamics of domain wall in thin film driven by spin current. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1251-1263. doi: 10.3934/dcdsb.2010.14.1251

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]