# American Institute of Mathematical Sciences

May  2007, 1(2): 299-317. doi: 10.3934/ipi.2007.1.299

## Numerical implementation of the factorization method within the complete electrode model of electrical impedance tomography

 1 Institute of Mathematics, Helsinki University of Technology, FI-02015 HUT, Finland, Finland, Finland

Received  October 2006 Revised  January 2007 Published  April 2007

In electrical impedance tomography, one tries to recover the spatial conductivity distribution inside a body from boundary measurements of current and voltage. In many practically important situations, the object has known background conductivity but it is contaminated by inhomogeneities. The factorization method of Andreas Kirsch provides a tool for locating such inclusions. In earlier work, it has been shown, both theoretically and numerically, that the inhomogeneities can be characterized by the factorization technique if the input current can be controlled and the potential can be measured everywhere on the object boundary. However, in real-world electrode applications, one can only control the net currents through certain surface patches and measure the corresponding potentials on the electrodes. In this work, the factorization method is translated to the framework of the complete electrode model of electrical impedance tomography and its functionality is demonstrated through two-dimensional numerical experiments. Special attention is paid to the efficient implementation of the algorithm in polygonal domains.
Citation: Nuutti Hyvönen, Harri Hakula, Sampsa Pursiainen. Numerical implementation of the factorization method within the complete electrode model of electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (2) : 299-317. doi: 10.3934/ipi.2007.1.299
 [1] Hiroshi Isozaki. Inverse boundary value problems in the horosphere - A link between hyperbolic geometry and electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (1) : 107-134. doi: 10.3934/ipi.2007.1.107 [2] Fabrice Delbary, Rainer Kress. Electrical impedance tomography using a point electrode inverse scheme for complete electrode data. Inverse Problems & Imaging, 2011, 5 (2) : 355-369. doi: 10.3934/ipi.2011.5.355 [3] Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems & Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355 [4] Jérémi Dardé, Harri Hakula, Nuutti Hyvönen, Stratos Staboulis. Fine-tuning electrode information in electrical impedance tomography. Inverse Problems & Imaging, 2012, 6 (3) : 399-421. doi: 10.3934/ipi.2012.6.399 [5] Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, Jari P. Kaipio, Erkki Somersalo. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Stochastic extension of the boundary map. Inverse Problems & Imaging, 2015, 9 (3) : 767-789. doi: 10.3934/ipi.2015.9.767 [6] Ville Kolehmainen, Matti Lassas, Petri Ola, Samuli Siltanen. Recovering boundary shape and conductivity in electrical impedance tomography. Inverse Problems & Imaging, 2013, 7 (1) : 217-242. doi: 10.3934/ipi.2013.7.217 [7] Melody Alsaker, Sarah Jane Hamilton, Andreas Hauptmann. A direct D-bar method for partial boundary data electrical impedance tomography with a priori information. Inverse Problems & Imaging, 2017, 11 (3) : 427-454. doi: 10.3934/ipi.2017020 [8] Yosra Boukari, Houssem Haddar. The factorization method applied to cracks with impedance boundary conditions. Inverse Problems & Imaging, 2013, 7 (4) : 1123-1138. doi: 10.3934/ipi.2013.7.1123 [9] Gen Nakamura, Päivi Ronkanen, Samuli Siltanen, Kazumi Tanuma. Recovering conductivity at the boundary in three-dimensional electrical impedance tomography. Inverse Problems & Imaging, 2011, 5 (2) : 485-510. doi: 10.3934/ipi.2011.5.485 [10] Bastian Gebauer. Localized potentials in electrical impedance tomography. Inverse Problems & Imaging, 2008, 2 (2) : 251-269. doi: 10.3934/ipi.2008.2.251 [11] Kari Astala, Jennifer L. Mueller, Lassi Päivärinta, Allan Perämäki, Samuli Siltanen. Direct electrical impedance tomography for nonsmooth conductivities. Inverse Problems & Imaging, 2011, 5 (3) : 531-549. doi: 10.3934/ipi.2011.5.531 [12] Helmut Harbrecht, Thorsten Hohage. A Newton method for reconstructing non star-shaped domains in electrical impedance tomography. Inverse Problems & Imaging, 2009, 3 (2) : 353-371. doi: 10.3934/ipi.2009.3.353 [13] Sarah Jane Hamilton, Andreas Hauptmann, Samuli Siltanen. A data-driven edge-preserving D-bar method for electrical impedance tomography. Inverse Problems & Imaging, 2014, 8 (4) : 1053-1072. doi: 10.3934/ipi.2014.8.1053 [14] Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, David Isaacson, Jari P. Kaipio, Debra McGivney, Erkki Somersalo, Joseph Volzer. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part I: Theory and preliminary results. Inverse Problems & Imaging, 2015, 9 (3) : 749-766. doi: 10.3934/ipi.2015.9.749 [15] Liliana Borcea, Fernando Guevara Vasquez, Alexander V. Mamonov. Study of noise effects in electrical impedance tomography with resistor networks. Inverse Problems & Imaging, 2013, 7 (2) : 417-443. doi: 10.3934/ipi.2013.7.417 [16] Dong liu, Ville Kolehmainen, Samuli Siltanen, Anne-maria Laukkanen, Aku Seppänen. Estimation of conductivity changes in a region of interest with electrical impedance tomography. Inverse Problems & Imaging, 2015, 9 (1) : 211-229. doi: 10.3934/ipi.2015.9.211 [17] Nicolay M. Tanushev, Luminita Vese. A piecewise-constant binary model for electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (2) : 423-435. doi: 10.3934/ipi.2007.1.423 [18] Nuutti Hyvönen, Lassi Päivärinta, Janne P. Tamminen. Enhancing D-bar reconstructions for electrical impedance tomography with conformal maps. Inverse Problems & Imaging, 2018, 12 (2) : 373-400. doi: 10.3934/ipi.2018017 [19] Kimmo Karhunen, Aku Seppänen, Jari P. Kaipio. Adaptive meshing approach to identification of cracks with electrical impedance tomography. Inverse Problems & Imaging, 2014, 8 (1) : 127-148. doi: 10.3934/ipi.2014.8.127 [20] Laurent Bourgeois, Houssem Haddar. Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems & Imaging, 2010, 4 (1) : 19-38. doi: 10.3934/ipi.2010.4.19

2018 Impact Factor: 1.469