June  2017, 24: 53-63. doi: 10.3934/era.2017.24.006

Sharpness of the Brascamp–Lieb inequality in Lorentz spaces

1. 

Department of Mathematics, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan

2. 

Department of Mathematical Sciences, Seoul National University, Seoul 151-747, Korea

3. 

Department of Mathematics and Information Sciences, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan

Received  January 13, 2017 Revised  April 17, 2017 Published  June 2017

Fund Project: This work was supported by JSPS Grant-in-Aid for Young Scientists (A) no. 16H05995 (Bez), NRF (Republic of Korea) Grant no. 2015R1A2A2A05000956 (Lee) and partially supported by JSPS Grand-in-Aid for Scientific Research (C) no. 16K05209 (Sawano). The first author would like to thank Jon Bennett for helpful discussions

We provide necessary conditions for the refined version of the Brascamp-Lieb inequality where the input functions are allowed to belong to Lorentz spaces, thereby establishing the sharpness of the range of Lorentz exponents in the subcritical case. Using similar considerations, some sharp refinements of the Strichartz estimates for the kinetic transport equation are established.

Citation: Neal Bez, Sanghyuk Lee, Shohei Nakamura, Yoshihiro Sawano. Sharpness of the Brascamp–Lieb inequality in Lorentz spaces. Electronic Research Announcements, 2017, 24: 53-63. doi: 10.3934/era.2017.24.006
References:
[1]

K. AstalaD. Faraco and K. Rogers, On Plancherel's identity for a 2D scattering transform, Nonlinearity, 28 (2015), 2721-2729. doi: 10.1088/0951-7715/28/8/2721. Google Scholar

[2]

K. Ball, Volumes of sections of cubes and related problems, in Geometric Aspects of Functional Analysis (eds. J. Lindenstrauss and V. D. Milman), Springer Lecture Notes in Math., 1376, Springer-Verlag, 1989,251–260. doi: 10.1007/BFb0090058. Google Scholar

[3]

F. Barthe, On a reverse form of the Brascamp-Lieb inequality, Invent. Math., 134 (1998), 355-361. doi: 10.1007/s002220050267. Google Scholar

[4]

J. Bennett, N. Bez, T. Flock and S. Lee, Stability of the Brascamp–Lieb constant and applications, to appear in American Journal of Mathematics.Google Scholar

[5]

J. BennettN. BezS. Gutiérrez and S. Lee, On the Strichartz estimates for the kinetic transport equation, Comm. Partial Differential Equations, 39 (2014), 1821-1826. doi: 10.1080/03605302.2013.850880. Google Scholar

[6]

J. BennettA. CarberyM. Christ and T. Tao, The Brascamp-Lieb inequalities: Finiteness, structure and extremals, Geom. Funct. Anal., 17 (2008), 1343-1415. doi: 10.1007/s00039-007-0619-6. Google Scholar

[7]

J. BennettA. CarberyM. Christ and T. Tao, Finite bounds for Hölder-Brascamp-Lieb multilinear inequalities, Math. Res. Lett., 17 (2010), 647-666. doi: 10.4310/MRL.2010.v17.n4.a6. Google Scholar

[8]

J. BennettA. Carbery and T. Tao, On the multilinear restriction and Kakeya conjectures, Acta Math., 196 (2006), 261-302. doi: 10.1007/s11511-006-0006-4. Google Scholar

[9]

H. J. Brascamp and E. H. Lieb, Best constants in Young's inequality, its converse, and its generalization to more than three functions, Adv. Math., 20 (1976), 151-173. doi: 10.1016/0001-8708(76)90184-5. Google Scholar

[10]

R. M. Brown, Estimates for the scattering map associated with a two-dimensional first-order system, J. Nonlinear Sci., 11 (2001), 459-471. doi: 10.1007/s00332-001-0394-8. Google Scholar

[11]

E. A. CarlenE. H. Lieb and M. Loss, A sharp analog of Young's inequality on $S^N$ and related entropy inequalities, Jour. Geom. Anal., 14 (2004), 487-520. doi: 10.1007/BF02922101. Google Scholar

[12]

F. Castella and B. Perthame, Estimations de Strichartz pour les équations de transport cinétique, C. R. Acad. Sci. Paris Sér. I Math., 332 (1996), 535-540. Google Scholar

[13]

M. Christ, On the restriction of the Fourier transform to curves: Endpoint results and the degenerate case, Trans. Amer. Math. Soc., 287 (1985), 223-238. doi: 10.1090/S0002-9947-1985-0766216-6. Google Scholar

[14]

G. P. CurberaJ. Garcá-CuervaJ. María Martell and C. Pérez, Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals, Adv. Math., 203 (2006), 256-318. doi: 10.1016/j.aim.2005.04.009. Google Scholar

[15]

Z. Guo and L. Peng, Endpoint Strichartz estimate for the kinetic transport equation in one dimension, C. R. Math. Acad. Sci. Paris, 345 (2007), 253-256. doi: 10.1016/j.crma.2007.07.002. Google Scholar

[16]

L. Guth, The endpoint case in the Bennett-Carbery-Tao multilinear Kakeya conjecture, Acta Math., 205 (2010), 263-286. doi: 10.1007/s11511-010-0055-6. Google Scholar

[17]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980. doi: 10.1353/ajm.1998.0039. Google Scholar

[18]

E. H. Lieb, Gaussian kernels have only Gaussian maximizers, Invent. Math., 102 (1990), 179-208. doi: 10.1007/BF01233426. Google Scholar

[19]

Z. Nie and R. M. Brown, Estimates for a family of multi-linear forms, J. Math. Anal. Appl., 377 (2011), 79-87. doi: 10.1016/j.jmaa.2010.09.070. Google Scholar

[20]

R. O'Neil, Convolution operators and $L(p, q)$ spaces, Duke Math. J., 30 (1963), 129-142. doi: 10.1215/S0012-7094-63-03015-1. Google Scholar

[21]

E. Ovcharov, Counterexamples to Strichartz estimates for the kinetic transport equation based on Besicovitch sets, Nonlinear Anal., 74 (2011), 2515-2522. doi: 10.1016/j.na.2010.12.007. Google Scholar

[22]

E. Ovcharov, Strichartz estimates for the kinetic transport equation, SIAM J. Math. Anal., 43 (2011), 1282-1310. doi: 10.1137/100803808. Google Scholar

[23]

P. Perry, Global well-posedness and long-time asymptotics for the defocussing Davey-Stewartson Ⅱ equation in $H^{1, 1}(\mathbb{C})$, J. Spectral Theory, 6 (2016), 429-481. doi: 10.4171/JST/129. Google Scholar

[24]

R. Quilodrán, On extremizing sequences for the adjoint restriction inequality on the cone, J. Lond. Math. Soc., 87 (2013), 223-246. doi: 10.1112/jlms/jds046. Google Scholar

[25]

E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, No. 32, Princeton University Press, 1971. Google Scholar

[26]

S. I. Valdimarsson, Optimisers for the Brascamp-Lieb inequality, Israel J. Math., 168 (2008), 253-274. doi: 10.1007/s11856-008-1067-1. Google Scholar

show all references

References:
[1]

K. AstalaD. Faraco and K. Rogers, On Plancherel's identity for a 2D scattering transform, Nonlinearity, 28 (2015), 2721-2729. doi: 10.1088/0951-7715/28/8/2721. Google Scholar

[2]

K. Ball, Volumes of sections of cubes and related problems, in Geometric Aspects of Functional Analysis (eds. J. Lindenstrauss and V. D. Milman), Springer Lecture Notes in Math., 1376, Springer-Verlag, 1989,251–260. doi: 10.1007/BFb0090058. Google Scholar

[3]

F. Barthe, On a reverse form of the Brascamp-Lieb inequality, Invent. Math., 134 (1998), 355-361. doi: 10.1007/s002220050267. Google Scholar

[4]

J. Bennett, N. Bez, T. Flock and S. Lee, Stability of the Brascamp–Lieb constant and applications, to appear in American Journal of Mathematics.Google Scholar

[5]

J. BennettN. BezS. Gutiérrez and S. Lee, On the Strichartz estimates for the kinetic transport equation, Comm. Partial Differential Equations, 39 (2014), 1821-1826. doi: 10.1080/03605302.2013.850880. Google Scholar

[6]

J. BennettA. CarberyM. Christ and T. Tao, The Brascamp-Lieb inequalities: Finiteness, structure and extremals, Geom. Funct. Anal., 17 (2008), 1343-1415. doi: 10.1007/s00039-007-0619-6. Google Scholar

[7]

J. BennettA. CarberyM. Christ and T. Tao, Finite bounds for Hölder-Brascamp-Lieb multilinear inequalities, Math. Res. Lett., 17 (2010), 647-666. doi: 10.4310/MRL.2010.v17.n4.a6. Google Scholar

[8]

J. BennettA. Carbery and T. Tao, On the multilinear restriction and Kakeya conjectures, Acta Math., 196 (2006), 261-302. doi: 10.1007/s11511-006-0006-4. Google Scholar

[9]

H. J. Brascamp and E. H. Lieb, Best constants in Young's inequality, its converse, and its generalization to more than three functions, Adv. Math., 20 (1976), 151-173. doi: 10.1016/0001-8708(76)90184-5. Google Scholar

[10]

R. M. Brown, Estimates for the scattering map associated with a two-dimensional first-order system, J. Nonlinear Sci., 11 (2001), 459-471. doi: 10.1007/s00332-001-0394-8. Google Scholar

[11]

E. A. CarlenE. H. Lieb and M. Loss, A sharp analog of Young's inequality on $S^N$ and related entropy inequalities, Jour. Geom. Anal., 14 (2004), 487-520. doi: 10.1007/BF02922101. Google Scholar

[12]

F. Castella and B. Perthame, Estimations de Strichartz pour les équations de transport cinétique, C. R. Acad. Sci. Paris Sér. I Math., 332 (1996), 535-540. Google Scholar

[13]

M. Christ, On the restriction of the Fourier transform to curves: Endpoint results and the degenerate case, Trans. Amer. Math. Soc., 287 (1985), 223-238. doi: 10.1090/S0002-9947-1985-0766216-6. Google Scholar

[14]

G. P. CurberaJ. Garcá-CuervaJ. María Martell and C. Pérez, Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals, Adv. Math., 203 (2006), 256-318. doi: 10.1016/j.aim.2005.04.009. Google Scholar

[15]

Z. Guo and L. Peng, Endpoint Strichartz estimate for the kinetic transport equation in one dimension, C. R. Math. Acad. Sci. Paris, 345 (2007), 253-256. doi: 10.1016/j.crma.2007.07.002. Google Scholar

[16]

L. Guth, The endpoint case in the Bennett-Carbery-Tao multilinear Kakeya conjecture, Acta Math., 205 (2010), 263-286. doi: 10.1007/s11511-010-0055-6. Google Scholar

[17]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980. doi: 10.1353/ajm.1998.0039. Google Scholar

[18]

E. H. Lieb, Gaussian kernels have only Gaussian maximizers, Invent. Math., 102 (1990), 179-208. doi: 10.1007/BF01233426. Google Scholar

[19]

Z. Nie and R. M. Brown, Estimates for a family of multi-linear forms, J. Math. Anal. Appl., 377 (2011), 79-87. doi: 10.1016/j.jmaa.2010.09.070. Google Scholar

[20]

R. O'Neil, Convolution operators and $L(p, q)$ spaces, Duke Math. J., 30 (1963), 129-142. doi: 10.1215/S0012-7094-63-03015-1. Google Scholar

[21]

E. Ovcharov, Counterexamples to Strichartz estimates for the kinetic transport equation based on Besicovitch sets, Nonlinear Anal., 74 (2011), 2515-2522. doi: 10.1016/j.na.2010.12.007. Google Scholar

[22]

E. Ovcharov, Strichartz estimates for the kinetic transport equation, SIAM J. Math. Anal., 43 (2011), 1282-1310. doi: 10.1137/100803808. Google Scholar

[23]

P. Perry, Global well-posedness and long-time asymptotics for the defocussing Davey-Stewartson Ⅱ equation in $H^{1, 1}(\mathbb{C})$, J. Spectral Theory, 6 (2016), 429-481. doi: 10.4171/JST/129. Google Scholar

[24]

R. Quilodrán, On extremizing sequences for the adjoint restriction inequality on the cone, J. Lond. Math. Soc., 87 (2013), 223-246. doi: 10.1112/jlms/jds046. Google Scholar

[25]

E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, No. 32, Princeton University Press, 1971. Google Scholar

[26]

S. I. Valdimarsson, Optimisers for the Brascamp-Lieb inequality, Israel J. Math., 168 (2008), 253-274. doi: 10.1007/s11856-008-1067-1. Google Scholar

[1]

Paolo Maremonti. A remark on the Stokes problem in Lorentz spaces. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1323-1342. doi: 10.3934/dcdss.2013.6.1323

[2]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[3]

Ren-You Zhong, Nan-Jing Huang. Strict feasibility for generalized mixed variational inequality in reflexive Banach spaces. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 261-274. doi: 10.3934/naco.2011.1.261

[4]

Giovanni Cupini, Eugenio Vecchi. Faber-Krahn and Lieb-type inequalities for the composite membrane problem. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2679-2691. doi: 10.3934/cpaa.2019119

[5]

Manuel Gutiérrez. Lorentz geometry technique in nonimaging optics. Conference Publications, 2003, 2003 (Special) : 386-392. doi: 10.3934/proc.2003.2003.386

[6]

Françoise Pène. Asymptotic of the number of obstacles visited by the planar Lorentz process. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 567-587. doi: 10.3934/dcds.2009.24.567

[7]

Mark F. Demers, Hong-Kun Zhang. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, 5 (4) : 665-709. doi: 10.3934/jmd.2011.5.665

[8]

Françoise Pène. Self-intersections of trajectories of the Lorentz process. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4781-4806. doi: 10.3934/dcds.2014.34.4781

[9]

Junjie Zhang, Shenzhou Zheng. Weighted lorentz estimates for nondivergence linear elliptic equations with partially BMO coefficients. Communications on Pure & Applied Analysis, 2017, 16 (3) : 899-914. doi: 10.3934/cpaa.2017043

[10]

A. Carati. On the existence of scattering solutions for the Abraham-Lorentz-Dirac equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 471-480. doi: 10.3934/dcdsb.2006.6.471

[11]

Shuang Liang, Shenzhou Zheng. Variable lorentz estimate for stationary stokes system with partially BMO coefficients. Communications on Pure & Applied Analysis, 2019, 18 (6) : 2879-2903. doi: 10.3934/cpaa.2019129

[12]

Jorge A. Becerril, Javier F. Rosenblueth. Necessity for isoperimetric inequality constraints. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1129-1158. doi: 10.3934/dcds.2017047

[13]

Gisella Croce, Bernard Dacorogna. On a generalized Wirtinger inequality. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1329-1341. doi: 10.3934/dcds.2003.9.1329

[14]

Sun-Sig Byun, Yumi Cho. Lorentz-Morrey regularity for nonlinear elliptic problems with irregular obstacles over Reifenberg flat domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4791-4804. doi: 10.3934/dcds.2015.35.4791

[15]

Stéphane Brull, Pierre Degond, Fabrice Deluzet, Alexandre Mouton. Asymptotic-preserving scheme for a bi-fluid Euler-Lorentz model. Kinetic & Related Models, 2011, 4 (4) : 991-1023. doi: 10.3934/krm.2011.4.991

[16]

Alessio Pomponio. Oscillating solutions for prescribed mean curvature equations: euclidean and lorentz-minkowski cases. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3899-3911. doi: 10.3934/dcds.2018169

[17]

YanYan Li, Tonia Ricciardi. A sharp Sobolev inequality on Riemannian manifolds. Communications on Pure & Applied Analysis, 2003, 2 (1) : 1-31. doi: 10.3934/cpaa.2003.2.1

[18]

Felipe Riquelme. Ruelle's inequality in negative curvature. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2809-2825. doi: 10.3934/dcds.2018119

[19]

Hubert L. Bray, Marcus A. Khuri. A Jang equation approach to the Penrose inequality. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 741-766. doi: 10.3934/dcds.2010.27.741

[20]

S. S. Dragomir, C. E. M. Pearce. Jensen's inequality for quasiconvex functions. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 279-291. doi: 10.3934/naco.2012.2.279

2018 Impact Factor: 0.263

Metrics

  • PDF downloads (57)
  • HTML views (1172)
  • Cited by (0)

[Back to Top]