January  2015, 22: 12-19. doi: 10.3934/era.2015.22.12

Smoothing 3-dimensional polyhedral spaces

1. 

Steklov Institute, St. Petersburg, Russian Federation

2. 

Institut für Mathematik, Friedrich-Schiller-Universität Jena, Germany

3. 

Mathematics Department, Pennsylvania State University, United States

4. 

National Research University, Higher School of Economics, Moscow, Russian Federation

Received  November 2014 Published  June 2015

We show that 3-dimensional polyhedral manifolds with nonnegative curvature in the sense of Alexandrov can be approximated by nonnegatively curved 3-dimensional Riemannian manifolds.
Citation: Nina Lebedeva, Vladimir Matveev, Anton Petrunin, Vsevolod Shevchishin. Smoothing 3-dimensional polyhedral spaces. Electronic Research Announcements, 2015, 22: 12-19. doi: 10.3934/era.2015.22.12
References:
[1]

C. Böhm and B. Wilking, Manifolds with positive curvature operators are space forms,, \emph{Ann. of Math. (2)}, 167 (2008), 1079. doi: 10.4007/annals.2008.167.1079. Google Scholar

[2]

B.-L. Chen, G. Xu and Z. Zhang, Local pinching estimates in 3-dim Ricci flow,, \emph{Math. Res. Lett.}, 20 (2013), 845. doi: 10.4310/MRL.2013.v20.n5.a3. Google Scholar

[3]

R. S. Hamilton, A compactness property for solutions of the Ricci flow,, \emph{Amer. J. Math.}, 117 (1995), 545. doi: 10.2307/2375080. Google Scholar

[4]

V. Kapovitch, Regularity of limits of noncollapsing sequences of manifolds,, \emph{Geom. Funct. Anal.}, 12 (2002), 121. doi: 10.1007/s00039-002-8240-1. Google Scholar

[5]

A. Petrunin, Polyhedral approximations of Riemannian manifolds,, \emph{Turkish J. Math.}, 27 (2003), 173. Google Scholar

[6]

T. Richard, Lower bounds on Ricci flow invariant curvatures and geometric applications,, \emph{J. Reine Angew. Math.}, 703 (2015), 27. doi: 10.1515/crelle-2013-0042. Google Scholar

[7]

M. Simon, Ricci flow of almost non-negatively curved three manifolds,, \emph{J. Reine Angew. Math.}, 630 (2009), 177. doi: 10.1515/CRELLE.2009.038. Google Scholar

[8]

M. Simon, Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below,, \emph{J. Reine Angew. Math.}, 662 (2012), 59. doi: 10.1515/CRELLE.2011.088. Google Scholar

[9]

W. Spindeler, $S^1$-Actions on 4-Manifolds and Fixed Point Homogeneous Manifolds of Nonnegative Curvature,, Ph.D. Thesis, (2014). Google Scholar

show all references

References:
[1]

C. Böhm and B. Wilking, Manifolds with positive curvature operators are space forms,, \emph{Ann. of Math. (2)}, 167 (2008), 1079. doi: 10.4007/annals.2008.167.1079. Google Scholar

[2]

B.-L. Chen, G. Xu and Z. Zhang, Local pinching estimates in 3-dim Ricci flow,, \emph{Math. Res. Lett.}, 20 (2013), 845. doi: 10.4310/MRL.2013.v20.n5.a3. Google Scholar

[3]

R. S. Hamilton, A compactness property for solutions of the Ricci flow,, \emph{Amer. J. Math.}, 117 (1995), 545. doi: 10.2307/2375080. Google Scholar

[4]

V. Kapovitch, Regularity of limits of noncollapsing sequences of manifolds,, \emph{Geom. Funct. Anal.}, 12 (2002), 121. doi: 10.1007/s00039-002-8240-1. Google Scholar

[5]

A. Petrunin, Polyhedral approximations of Riemannian manifolds,, \emph{Turkish J. Math.}, 27 (2003), 173. Google Scholar

[6]

T. Richard, Lower bounds on Ricci flow invariant curvatures and geometric applications,, \emph{J. Reine Angew. Math.}, 703 (2015), 27. doi: 10.1515/crelle-2013-0042. Google Scholar

[7]

M. Simon, Ricci flow of almost non-negatively curved three manifolds,, \emph{J. Reine Angew. Math.}, 630 (2009), 177. doi: 10.1515/CRELLE.2009.038. Google Scholar

[8]

M. Simon, Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below,, \emph{J. Reine Angew. Math.}, 662 (2012), 59. doi: 10.1515/CRELLE.2011.088. Google Scholar

[9]

W. Spindeler, $S^1$-Actions on 4-Manifolds and Fixed Point Homogeneous Manifolds of Nonnegative Curvature,, Ph.D. Thesis, (2014). Google Scholar

[1]

Yafeng Li, Guo Sun, Yiju Wang. A smoothing Broyden-like method for polyhedral cone constrained eigenvalue problem. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 529-537. doi: 10.3934/naco.2011.1.529

[2]

Alberto Farina, Enrico Valdinoci. A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1139-1144. doi: 10.3934/dcds.2011.30.1139

[3]

Xumin Jiang. Isometric embedding with nonnegative Gauss curvature under the graph setting. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3463-3477. doi: 10.3934/dcds.2019143

[4]

Diego Castellaneta, Alberto Farina, Enrico Valdinoci. A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1983-2003. doi: 10.3934/cpaa.2012.11.1983

[5]

Joel Spruck, Ling Xiao. Convex spacelike hypersurfaces of constant curvature in de Sitter space. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2225-2242. doi: 10.3934/dcdsb.2012.17.2225

[6]

Yoshikazu Giga, Yukihiro Seki, Noriaki Umeda. On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1463-1470. doi: 10.3934/dcds.2011.29.1463

[7]

Matthias Bergner, Lars Schäfer. Time-like surfaces of prescribed anisotropic mean curvature in Minkowski space. Conference Publications, 2011, 2011 (Special) : 155-162. doi: 10.3934/proc.2011.2011.155

[8]

Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159-169. doi: 10.3934/proc.2013.2013.159

[9]

Elias M. Guio, Ricardo Sa Earp. Existence and non-existence for a mean curvature equation in hyperbolic space. Communications on Pure & Applied Analysis, 2005, 4 (3) : 549-568. doi: 10.3934/cpaa.2005.4.549

[10]

Hongjie Ju, Jian Lu, Huaiyu Jian. Translating solutions to mean curvature flow with a forcing term in Minkowski space. Communications on Pure & Applied Analysis, 2010, 9 (4) : 963-973. doi: 10.3934/cpaa.2010.9.963

[11]

Qinian Jin, YanYan Li. Starshaped compact hypersurfaces with prescribed $k$-th mean curvature in hyperbolic space. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 367-377. doi: 10.3934/dcds.2006.15.367

[12]

Nicolas Bedaride. Entropy of polyhedral billiard. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 89-102. doi: 10.3934/dcds.2007.19.89

[13]

Oleksandr Misiats, Nung Kwan Yip. Convergence of space-time discrete threshold dynamics to anisotropic motion by mean curvature. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6379-6411. doi: 10.3934/dcds.2016076

[14]

Ruyun Ma, Man Xu. Connected components of positive solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2701-2718. doi: 10.3934/dcdsb.2018271

[15]

Ye Tian, Qingwei Jin, Zhibin Deng. Quadratic optimization over a polyhedral cone. Journal of Industrial & Management Optimization, 2016, 12 (1) : 269-283. doi: 10.3934/jimo.2016.12.269

[16]

Janusz Mierczyński. Averaging in random systems of nonnegative matrices. Conference Publications, 2015, 2015 (special) : 835-840. doi: 10.3934/proc.2015.0835

[17]

Chaoqian Li, Yaqiang Wang, Jieyi Yi, Yaotang Li. Bounds for the spectral radius of nonnegative tensors. Journal of Industrial & Management Optimization, 2016, 12 (3) : 975-990. doi: 10.3934/jimo.2016.12.975

[18]

Przemysław Górka. Quasi-static evolution of polyhedral crystals. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 309-320. doi: 10.3934/dcdsb.2008.9.309

[19]

Gurkan Ozturk, Mehmet Tahir Ciftci. Clustering based polyhedral conic functions algorithm in classification. Journal of Industrial & Management Optimization, 2015, 11 (3) : 921-932. doi: 10.3934/jimo.2015.11.921

[20]

Chinmay Kumar Giri. Index-proper nonnegative splittings of matrices. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 103-113. doi: 10.3934/naco.2016002

2018 Impact Factor: 0.263

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (0)

[Back to Top]