January  2012, 19: 41-48. doi: 10.3934/era.2012.19.41

Boundaries, Weyl groups, and Superrigidity

1. 

Mathematics Department, The Technion, 32000 Haifa, Israel

2. 

Mathematics, Statistics and Computer Science Department, University of Illinois at Chicago, Chicago, 851 S. Morgan St., Illinois, 60607, United States

Received  September 2011 Published  March 2012

This note describes a unified approach to several superrigidity results, old and new, concerning representations of lattices into simple algebraic groups over local fields. For an arbitrary group $\Gamma$ and a boundary action $\Gamma$ ↷ $B$ we associate a certain generalized Weyl group $W_{{\Gamma}{B}}$ and show that any representation with a Zariski dense unbounded image in a simple algebraic group, $\rho:\Gamma\to \bf{H}$, defines a special homomorphism $W_{{\Gamma}{B}}\to Weyl_{\bf H}$. This general fact allows the deduction of the aforementioned superrigidity results.
Citation: Uri Bader, Alex Furman. Boundaries, Weyl groups, and Superrigidity. Electronic Research Announcements, 2012, 19: 41-48. doi: 10.3934/era.2012.19.41
References:
[1]

U. Bader and A. Furman, Superrigidity via Weyl groups: Hyperbolic-like targets,, preprint., (). Google Scholar

[2]

U. Bader, A. Furman and A. Shaker, Superrigidity via Weyl groups: Actions on the circle,, preprint., (). Google Scholar

[3]

U. Bader and Y. Shalom, Factor and normal subgroup theorems for lattices in products of groups,, Invent. Math., 163 (2006), 415. doi: 10.1007/s00222-005-0469-5. Google Scholar

[4]

M. Burger and N. Monod, Continuous bounded cohomology and applications to rigidity theory,, Geom. Funct. Anal., 12 (2002), 219. doi: 10.1007/s00039-002-8245-9. Google Scholar

[5]

M. Burger and S. Mozes, $CAT$(-$1$)-spaces, divergence groups and their commensurators,, J. Amer. Math. Soc., 9 (1996), 57. doi: 10.1090/S0894-0347-96-00196-8. Google Scholar

[6]

M. Burger, S. Mozes and R. J. Zimmer, Linear representations and arithmeticity of lattices in products of trees,, in, 9 (2009), 1. Google Scholar

[7]

H. Furstenberg, A note on Borel's density theorem,, Proc. Amer. Math. Soc., 55 (1976), 209. Google Scholar

[8]

T. Gelander, A. Karlsson and G. A. Margulis, Superrigidity, generalized harmonic maps and uniformly convex spaces,, Geom. Funct. Anal., 17 (2008), 1524. doi: 10.1007/s00039-007-0639-2. Google Scholar

[9]

V. A. Kaimanovich, Double ergodicity of the Poisson boundary and applications to bounded cohomology,, Geom. Funct. Anal., 13 (2003), 852. doi: 10.1007/s00039-003-0433-8. Google Scholar

[10]

G. A. Margulis, Discrete groups of motions of manifolds of nonpositive curvature,, in, (1975), 21. Google Scholar

[11]

_____, Finiteness of quotient groups of discrete groups,, Funkts. Anal. Prilozh., 13 (1979), 28. Google Scholar

[12]

_____, Discrete Subgroups of Semisimple Lie Groups,, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], (1991). Google Scholar

[13]

N. Monod, Superrigidity for irreducible lattices and geometric splitting,, J. Amer. Math. Soc., 19 (2006), 781. doi: 10.1090/S0894-0347-06-00525-X. Google Scholar

[14]

_____, "Continuous Bounded Cohomology of Locally Compact Groups,", Lecture Notes in Mathematics, (1758). doi: 10.1007/b80626. Google Scholar

[15]

_____, Arithmeticity vs. nonlinearity for irreducible lattices,, Geom. Dedicata, 112 (2005), 225. doi: 10.1007/s10711-004-6162-9. Google Scholar

[16]

, Y. Shalom and T. Steger,, unpublished., (). Google Scholar

[17]

Robert J. Zimmer, Amenable ergodic group actions and an application to Poisson boundaries of random walks,, J. Functional Analysis, 27 (1978), 350. doi: 10.1016/0022-1236(78)90013-7. Google Scholar

[18]

R. J. Zimmer, Strong rigidity for ergodic actions of semisimple Lie groups,, Ann. of Math. (2), 112 (1980), 511. doi: 10.2307/1971090. Google Scholar

[19]

_____, "Ergodic Theory and Semisimple Groups,", Monographs in Mathematics, (1984). Google Scholar

show all references

References:
[1]

U. Bader and A. Furman, Superrigidity via Weyl groups: Hyperbolic-like targets,, preprint., (). Google Scholar

[2]

U. Bader, A. Furman and A. Shaker, Superrigidity via Weyl groups: Actions on the circle,, preprint., (). Google Scholar

[3]

U. Bader and Y. Shalom, Factor and normal subgroup theorems for lattices in products of groups,, Invent. Math., 163 (2006), 415. doi: 10.1007/s00222-005-0469-5. Google Scholar

[4]

M. Burger and N. Monod, Continuous bounded cohomology and applications to rigidity theory,, Geom. Funct. Anal., 12 (2002), 219. doi: 10.1007/s00039-002-8245-9. Google Scholar

[5]

M. Burger and S. Mozes, $CAT$(-$1$)-spaces, divergence groups and their commensurators,, J. Amer. Math. Soc., 9 (1996), 57. doi: 10.1090/S0894-0347-96-00196-8. Google Scholar

[6]

M. Burger, S. Mozes and R. J. Zimmer, Linear representations and arithmeticity of lattices in products of trees,, in, 9 (2009), 1. Google Scholar

[7]

H. Furstenberg, A note on Borel's density theorem,, Proc. Amer. Math. Soc., 55 (1976), 209. Google Scholar

[8]

T. Gelander, A. Karlsson and G. A. Margulis, Superrigidity, generalized harmonic maps and uniformly convex spaces,, Geom. Funct. Anal., 17 (2008), 1524. doi: 10.1007/s00039-007-0639-2. Google Scholar

[9]

V. A. Kaimanovich, Double ergodicity of the Poisson boundary and applications to bounded cohomology,, Geom. Funct. Anal., 13 (2003), 852. doi: 10.1007/s00039-003-0433-8. Google Scholar

[10]

G. A. Margulis, Discrete groups of motions of manifolds of nonpositive curvature,, in, (1975), 21. Google Scholar

[11]

_____, Finiteness of quotient groups of discrete groups,, Funkts. Anal. Prilozh., 13 (1979), 28. Google Scholar

[12]

_____, Discrete Subgroups of Semisimple Lie Groups,, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], (1991). Google Scholar

[13]

N. Monod, Superrigidity for irreducible lattices and geometric splitting,, J. Amer. Math. Soc., 19 (2006), 781. doi: 10.1090/S0894-0347-06-00525-X. Google Scholar

[14]

_____, "Continuous Bounded Cohomology of Locally Compact Groups,", Lecture Notes in Mathematics, (1758). doi: 10.1007/b80626. Google Scholar

[15]

_____, Arithmeticity vs. nonlinearity for irreducible lattices,, Geom. Dedicata, 112 (2005), 225. doi: 10.1007/s10711-004-6162-9. Google Scholar

[16]

, Y. Shalom and T. Steger,, unpublished., (). Google Scholar

[17]

Robert J. Zimmer, Amenable ergodic group actions and an application to Poisson boundaries of random walks,, J. Functional Analysis, 27 (1978), 350. doi: 10.1016/0022-1236(78)90013-7. Google Scholar

[18]

R. J. Zimmer, Strong rigidity for ergodic actions of semisimple Lie groups,, Ann. of Math. (2), 112 (1980), 511. doi: 10.2307/1971090. Google Scholar

[19]

_____, "Ergodic Theory and Semisimple Groups,", Monographs in Mathematics, (1984). Google Scholar

[1]

Frédéric Naud, Anke Pohl, Louis Soares. Fractal Weyl bounds and Hecke triangle groups. Electronic Research Announcements, 2019, 26: 24-35. doi: 10.3934/era.2019.26.003

[2]

Kurt Vinhage. On the rigidity of Weyl chamber flows and Schur multipliers as topological groups. Journal of Modern Dynamics, 2015, 9: 25-49. doi: 10.3934/jmd.2015.9.25

[3]

Ha Pham, Plamen Stefanov. Weyl asymptotics of the transmission eigenvalues for a constant index of refraction. Inverse Problems & Imaging, 2014, 8 (3) : 795-810. doi: 10.3934/ipi.2014.8.795

[4]

Yuri Latushkin, Alim Sukhtayev. The Evans function and the Weyl-Titchmarsh function. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 939-970. doi: 10.3934/dcdss.2012.5.939

[5]

Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867

[6]

Vieri Benci, Donato Fortunato. Hylomorphic solitons on lattices. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 875-897. doi: 10.3934/dcds.2010.28.875

[7]

Paula Kemp. Fixed points and complete lattices. Conference Publications, 2007, 2007 (Special) : 568-572. doi: 10.3934/proc.2007.2007.568

[8]

Hervé Le Dret, Annie Raoult. Homogenization of hexagonal lattices. Networks & Heterogeneous Media, 2013, 8 (2) : 541-572. doi: 10.3934/nhm.2013.8.541

[9]

Dmitry Jakobson and Iosif Polterovich. Lower bounds for the spectral function and for the remainder in local Weyl's law on manifolds. Electronic Research Announcements, 2005, 11: 71-77.

[10]

Michael Braun. On lattices, binary codes, and network codes. Advances in Mathematics of Communications, 2011, 5 (2) : 225-232. doi: 10.3934/amc.2011.5.225

[11]

Ismara  Álvarez-Barrientos, Mijail Borges-Quintana, Miguel Angel Borges-Trenard, Daniel Panario. Computing Gröbner bases associated with lattices. Advances in Mathematics of Communications, 2016, 10 (4) : 851-860. doi: 10.3934/amc.2016045

[12]

Dario Bambusi, D. Vella. Quasi periodic breathers in Hamiltonian lattices with symmetries. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 389-399. doi: 10.3934/dcdsb.2002.2.389

[13]

Gerhard Keller, Carlangelo Liverani. Coupled map lattices without cluster expansion. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 325-335. doi: 10.3934/dcds.2004.11.325

[14]

Yejuan Wang, Kuang Bai. Pullback attractors for a class of nonlinear lattices with delays. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1213-1230. doi: 10.3934/dcdsb.2015.20.1213

[15]

Hans Koch, Rafael De La Llave, Charles Radin. Aubry-Mather theory for functions on lattices. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 135-151. doi: 10.3934/dcds.1997.3.135

[16]

Robert L. Griess, Jr. and Ching Hung Lam. Rootless pairs of $EE_8$-lattices. Electronic Research Announcements, 2008, 15: 52-61. doi: 10.3934/era.2008.15.52

[17]

Marco Cicalese, Matthias Ruf. Discrete spin systems on random lattices at the bulk scaling. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 101-117. doi: 10.3934/dcdss.2017006

[18]

Ludovic Rifford. Ricci curvatures in Carnot groups. Mathematical Control & Related Fields, 2013, 3 (4) : 467-487. doi: 10.3934/mcrf.2013.3.467

[19]

Neal Koblitz, Alfred Menezes. Another look at generic groups. Advances in Mathematics of Communications, 2007, 1 (1) : 13-28. doi: 10.3934/amc.2007.1.13

[20]

Sergei V. Ivanov. On aspherical presentations of groups. Electronic Research Announcements, 1998, 4: 109-114.

2018 Impact Factor: 0.263

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]