doi: 10.3934/eect.2020011

Null-controllability properties of a fractional wave equation with a memory term

1. 

DeustoTech, University of Deusto, 48007 Bilbao, Basque Country, Spain, Facultad de Ingeniería, Universidad de Deusto, Avenida de las Universidades 24, 48007 Bilbao, Basque Country, Spain

2. 

University of Puerto Rico, Rio Piedras Campus, Department of Mathematics, Faculty of Natural Sciences, 17 University AVE. STE 1701 San Juan PR 00925-2537 (USA)

* Corresponding author: Umberto Biccari

Received  January 2019 Revised  May 2019 Published  August 2019

Fund Project: The work of the first author is supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement NO: 694126-DyCon), by the Grant MTM2017-92996-C2-1-R COSNET of MINECO (Spain), and by the ELKARTEK project KK-2018/00083 ROAD2DC of the Basque Government. The work of both authors is supported by the Air Force Office of Scientific Research (AFOSR) under Award NO: FA9550-18-1-0242

We study the null-controllability properties of a one-dimensional wave equation with memory associated with the fractional Laplace operator. The goal is not only to drive the displacement and the velocity to rest at some time-instant but also to require the memory term to vanish at the same time, ensuring that the whole process reaches the equilibrium. The problem being equivalent to a coupled nonlocal PDE-ODE system, in which the ODE component has zero velocity of propagation, we are required to use a moving control strategy. Assuming that the control is acting on an open subset $ \omega(t) $ which is moving with a constant velocity $ c\in\mathbb{R} $, the main result of the paper states that the equation is null controllable in a sufficiently large time $ T $ and for initial data belonging to suitable fractional order Sobolev spaces. The proof will use a careful analysis of the spectrum of the operator associated with the system and an application of a classical moment method.

Citation: Umberto Biccari, Mahamadi Warma. Null-controllability properties of a fractional wave equation with a memory term. Evolution Equations & Control Theory, doi: 10.3934/eect.2020011
References:
[1]

U. Biccari, Internal control for non-local Schrödinger and wave equations involving the fractional Laplace operator, arXiv preprint, arXiv: 1411.7800.Google Scholar

[2]

U. Biccari and S. Micu, Null-controllability properties of the wave equation with a second order memory term, J. Differential Equations, 267 (2019), 1376-1422. doi: 10.1016/j.jde.2019.02.009. Google Scholar

[3]

F. W. Chaves-Silva, L. Rosier and E. Zuazua, Null controllability of a system of viscoelasticity with a moving control, J. Math. Pures Appl. (9), 101 (2014), 198–222, https://doi.org/10.1016/j.matpur.2013.05.009. doi: 10.1016/j.matpur.2013.05.009. Google Scholar

[4]

F. W. Chaves-Silva, X. Zhang and E. Zuazua, Controllability of evolution equations with memory, SIAM J. Control Optim., 55 (2017), 2437–2459, https://doi.org/10.1137/151004239. doi: 10.1137/151004239. Google Scholar

[5]

B. Claus and M. Warma, Realization of the fractional laplacian with nonlocal exterior conditions via forms method, arXiv preprint, arXiv: 1904.13312.Google Scholar

[6]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573, https://doi.org/10.1016/j.bulsci.2011.12.004. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar

[7]

A. A. Dubkov, B. Spagnolo and V. V. Uchaikin, Lévy flight superdiffusion: an introduction, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 2649–2672, https://doi.org/10.1142/S0218127408021877. doi: 10.1142/S0218127408021877. Google Scholar

[8]

C. G. Gal and M. Warma, Fractional in time semilinear parabolic equations and applications, HAL Id: hal-01578788, hhttps://hal.archives-ouvertes.fr/hal-01578788.Google Scholar

[9]

C. G. Gal and M. Warma, Nonlocal transmission problems with fractional diffusion and boundary conditions on non-smooth interfaces, Comm. Partial Differential Equations, 42 (2017), 579–625, https://doi.org/10.1080/03605302.2017.1295060. doi: 10.1080/03605302.2017.1295060. Google Scholar

[10]

R. Gorenflo, F. Mainardi and A. Vivoli, Continuous-time random walk and parametric subordination in fractional diffusion, Chaos Solitons Fractals, 34 (2007), 87–103, https://doi.org/10.1016/j.chaos.2007.01.052. doi: 10.1016/j.chaos.2007.01.052. Google Scholar

[11]

J.-P. Kahane, Pseudo-périodicité et séries de Fourier lacunaires, Ann. Sci. École Norm. Sup. (3), 79 (1962), 93–150, http://www.numdam.org/item?id=ASENS_1962_3_79_2_93_0. doi: 10.24033/asens.1108. Google Scholar

[12]

J. U. Kim, Control of a second-order integro-differential equation, SIAM J. Control Optim., 31 (1993), 101–110, https://doi.org/10.1137/0331008. doi: 10.1137/0331008. Google Scholar

[13]

M. Kwaśnicki, Eigenvalues of the fractional Laplace operator in the interval, J. Funct. Anal., 262 (2012), 2379–2402, https://doi.org/10.1016/j.jfa.2011.12.004. doi: 10.1016/j.jfa.2011.12.004. Google Scholar

[14]

G. Leugering, Exact controllability in viscoelasticity of fading memory type, Applicable Anal., 18 (1984), 221–243, https://doi.org/10.1080/00036818408839521. doi: 10.1080/00036818408839521. Google Scholar

[15]

G. Leugering, Exact boundary controllability of an integro-differential equation, Appl. Math. Optim., 15 (1987), 223–250, https://doi.org/10.1007/BF01442653. doi: 10.1007/BF01442653. Google Scholar

[16]

P. Loreti, L. Pandolfi and D. Sforza, Boundary controllability and observability of a viscoelastic string, SIAM J. Control Optim., 50 (2012), 820–844, https://doi.org/10.1137/110827740. doi: 10.1137/110827740. Google Scholar

[17]

P. Loreti and D. Sforza, Reachability problems for a class of integro-differential equations, J. Differential Equations, 248 (2010), 1711–1755, https://doi.org/10.1016/j.jde.2009.09.016. doi: 10.1016/j.jde.2009.09.016. Google Scholar

[18]

Q. Lü, X. Zhang and E. Zuazua, Null controllability for wave equations with memory, J. Math. Pures Appl. (9), 108 (2017), 500–531, https://doi.org/10.1016/j.matpur.2017.05.001. doi: 10.1016/j.matpur.2017.05.001. Google Scholar

[19]

B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422–437, https://doi.org/10.1137/1010093. doi: 10.1137/1010093. Google Scholar

[20]

P. Martin, L. Rosier and P. Rouchon, Null controllability of the structurally damped wave equation with moving control, SIAM J. Control Optim., 51 (2013), 660–684, https://doi.org/10.1137/110856150. doi: 10.1137/110856150. Google Scholar

[21]

M. I. Mustafa, On the control of the wave equation by memory-type boundary condition, Discrete Contin. Dyn. Syst., 35 (2015), 1179–1192, https://doi.org/10.3934/dcds.2015.35.1179. doi: 10.3934/dcds.2015.35.1179. Google Scholar

[22]

L. Pandolfi, Boundary controllability and source reconstruction in a viscoelastic string under external traction, J. Math. Anal. Appl., 407 (2013), 464–479, https://doi.org/10.1016/j.jmaa.2013.05.051. doi: 10.1016/j.jmaa.2013.05.051. Google Scholar

[23]

J. Prüss, Evolutionary Integral Equations and Applications, [2012] reprint of the 1993 edition, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1993, https://doi.org/10.1007/978-3-0348-8570-6. doi: 10.1007/978-3-0348-8570-6. Google Scholar

[24]

M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity, vol. 35 of Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987. Google Scholar

[25]

I. Romanov and A. Shamaev, Exact controllability of the distributed system, governed by string equation with memory, J. Dyn. Control Syst., 19 (2013), 611–623, https://doi.org/10.1007/s10883-013-9199-y. doi: 10.1007/s10883-013-9199-y. Google Scholar

[26]

L. Rosier and B.-Y. Zhang, Unique continuation property and control for the Benjamin-Bona-Mahony equation on a periodic domain, J. Differential Equations, 254 (2013), 141–178, https://doi.org/10.1016/j.jde.2012.08.014. doi: 10.1016/j.jde.2012.08.014. Google Scholar

[27]

W. R. Schneider, Grey noise, in Stochastic Processes, Physics and Geometry (Ascona and Locarno, 1988), World Sci. Publ., Teaneck, NJ, (1990), 676–681. Google Scholar

[28]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137. doi: 10.3934/dcds.2013.33.2105. Google Scholar

[29]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831–855, https://doi.org/10.1017/S0308210512001783. doi: 10.1017/S0308210512001783. Google Scholar

[30]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2009, https://doi.org/10.1007/978-3-7643-8994-9. doi: 10.1007/978-3-7643-8994-9. Google Scholar

[31]

E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. SeMA, 49 (2009), 33-44. Google Scholar

[32]

M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., 42 (2015), 499–547, https://doi.org/10.1007/s11118-014-9443-4. doi: 10.1007/s11118-014-9443-4. Google Scholar

[33]

M. Warma, Approximate controllabilty from the exterior of space-time fractional diffusive equations, SIAM J. Control Optim., 57 (2019), 2037–2063, https://doi.org/10.1137/18M117145X. doi: 10.1137/18M117145X. Google Scholar

[34]

M. Warma and S. Zamorano, Analysis of the controllability from the exterior of strong damping nonlocal wave equations, ESAIM: Control, Optimisation and Calculus of Variations (COCV), (2019), https://doi.org/10.1051/cocv/2019028. doi: 10.1051/cocv/2019028. Google Scholar

[35]

R. M. Young, An Introduction to Nonharmonic Fourier Series, 1st edition, Academic Press, Inc., San Diego, CA, 2001. Google Scholar

[36]

P. Zhuang and F. Liu, Implicit difference approximation for the time fractional diffusion equation, J. Appl. Math. Comput., 22 (2006), 87–99, https://doi.org/10.1007/BF02832039. doi: 10.1007/BF02832039. Google Scholar

show all references

References:
[1]

U. Biccari, Internal control for non-local Schrödinger and wave equations involving the fractional Laplace operator, arXiv preprint, arXiv: 1411.7800.Google Scholar

[2]

U. Biccari and S. Micu, Null-controllability properties of the wave equation with a second order memory term, J. Differential Equations, 267 (2019), 1376-1422. doi: 10.1016/j.jde.2019.02.009. Google Scholar

[3]

F. W. Chaves-Silva, L. Rosier and E. Zuazua, Null controllability of a system of viscoelasticity with a moving control, J. Math. Pures Appl. (9), 101 (2014), 198–222, https://doi.org/10.1016/j.matpur.2013.05.009. doi: 10.1016/j.matpur.2013.05.009. Google Scholar

[4]

F. W. Chaves-Silva, X. Zhang and E. Zuazua, Controllability of evolution equations with memory, SIAM J. Control Optim., 55 (2017), 2437–2459, https://doi.org/10.1137/151004239. doi: 10.1137/151004239. Google Scholar

[5]

B. Claus and M. Warma, Realization of the fractional laplacian with nonlocal exterior conditions via forms method, arXiv preprint, arXiv: 1904.13312.Google Scholar

[6]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573, https://doi.org/10.1016/j.bulsci.2011.12.004. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar

[7]

A. A. Dubkov, B. Spagnolo and V. V. Uchaikin, Lévy flight superdiffusion: an introduction, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 2649–2672, https://doi.org/10.1142/S0218127408021877. doi: 10.1142/S0218127408021877. Google Scholar

[8]

C. G. Gal and M. Warma, Fractional in time semilinear parabolic equations and applications, HAL Id: hal-01578788, hhttps://hal.archives-ouvertes.fr/hal-01578788.Google Scholar

[9]

C. G. Gal and M. Warma, Nonlocal transmission problems with fractional diffusion and boundary conditions on non-smooth interfaces, Comm. Partial Differential Equations, 42 (2017), 579–625, https://doi.org/10.1080/03605302.2017.1295060. doi: 10.1080/03605302.2017.1295060. Google Scholar

[10]

R. Gorenflo, F. Mainardi and A. Vivoli, Continuous-time random walk and parametric subordination in fractional diffusion, Chaos Solitons Fractals, 34 (2007), 87–103, https://doi.org/10.1016/j.chaos.2007.01.052. doi: 10.1016/j.chaos.2007.01.052. Google Scholar

[11]

J.-P. Kahane, Pseudo-périodicité et séries de Fourier lacunaires, Ann. Sci. École Norm. Sup. (3), 79 (1962), 93–150, http://www.numdam.org/item?id=ASENS_1962_3_79_2_93_0. doi: 10.24033/asens.1108. Google Scholar

[12]

J. U. Kim, Control of a second-order integro-differential equation, SIAM J. Control Optim., 31 (1993), 101–110, https://doi.org/10.1137/0331008. doi: 10.1137/0331008. Google Scholar

[13]

M. Kwaśnicki, Eigenvalues of the fractional Laplace operator in the interval, J. Funct. Anal., 262 (2012), 2379–2402, https://doi.org/10.1016/j.jfa.2011.12.004. doi: 10.1016/j.jfa.2011.12.004. Google Scholar

[14]

G. Leugering, Exact controllability in viscoelasticity of fading memory type, Applicable Anal., 18 (1984), 221–243, https://doi.org/10.1080/00036818408839521. doi: 10.1080/00036818408839521. Google Scholar

[15]

G. Leugering, Exact boundary controllability of an integro-differential equation, Appl. Math. Optim., 15 (1987), 223–250, https://doi.org/10.1007/BF01442653. doi: 10.1007/BF01442653. Google Scholar

[16]

P. Loreti, L. Pandolfi and D. Sforza, Boundary controllability and observability of a viscoelastic string, SIAM J. Control Optim., 50 (2012), 820–844, https://doi.org/10.1137/110827740. doi: 10.1137/110827740. Google Scholar

[17]

P. Loreti and D. Sforza, Reachability problems for a class of integro-differential equations, J. Differential Equations, 248 (2010), 1711–1755, https://doi.org/10.1016/j.jde.2009.09.016. doi: 10.1016/j.jde.2009.09.016. Google Scholar

[18]

Q. Lü, X. Zhang and E. Zuazua, Null controllability for wave equations with memory, J. Math. Pures Appl. (9), 108 (2017), 500–531, https://doi.org/10.1016/j.matpur.2017.05.001. doi: 10.1016/j.matpur.2017.05.001. Google Scholar

[19]

B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422–437, https://doi.org/10.1137/1010093. doi: 10.1137/1010093. Google Scholar

[20]

P. Martin, L. Rosier and P. Rouchon, Null controllability of the structurally damped wave equation with moving control, SIAM J. Control Optim., 51 (2013), 660–684, https://doi.org/10.1137/110856150. doi: 10.1137/110856150. Google Scholar

[21]

M. I. Mustafa, On the control of the wave equation by memory-type boundary condition, Discrete Contin. Dyn. Syst., 35 (2015), 1179–1192, https://doi.org/10.3934/dcds.2015.35.1179. doi: 10.3934/dcds.2015.35.1179. Google Scholar

[22]

L. Pandolfi, Boundary controllability and source reconstruction in a viscoelastic string under external traction, J. Math. Anal. Appl., 407 (2013), 464–479, https://doi.org/10.1016/j.jmaa.2013.05.051. doi: 10.1016/j.jmaa.2013.05.051. Google Scholar

[23]

J. Prüss, Evolutionary Integral Equations and Applications, [2012] reprint of the 1993 edition, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1993, https://doi.org/10.1007/978-3-0348-8570-6. doi: 10.1007/978-3-0348-8570-6. Google Scholar

[24]

M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity, vol. 35 of Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987. Google Scholar

[25]

I. Romanov and A. Shamaev, Exact controllability of the distributed system, governed by string equation with memory, J. Dyn. Control Syst., 19 (2013), 611–623, https://doi.org/10.1007/s10883-013-9199-y. doi: 10.1007/s10883-013-9199-y. Google Scholar

[26]

L. Rosier and B.-Y. Zhang, Unique continuation property and control for the Benjamin-Bona-Mahony equation on a periodic domain, J. Differential Equations, 254 (2013), 141–178, https://doi.org/10.1016/j.jde.2012.08.014. doi: 10.1016/j.jde.2012.08.014. Google Scholar

[27]

W. R. Schneider, Grey noise, in Stochastic Processes, Physics and Geometry (Ascona and Locarno, 1988), World Sci. Publ., Teaneck, NJ, (1990), 676–681. Google Scholar

[28]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137. doi: 10.3934/dcds.2013.33.2105. Google Scholar

[29]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831–855, https://doi.org/10.1017/S0308210512001783. doi: 10.1017/S0308210512001783. Google Scholar

[30]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2009, https://doi.org/10.1007/978-3-7643-8994-9. doi: 10.1007/978-3-7643-8994-9. Google Scholar

[31]

E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. SeMA, 49 (2009), 33-44. Google Scholar

[32]

M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., 42 (2015), 499–547, https://doi.org/10.1007/s11118-014-9443-4. doi: 10.1007/s11118-014-9443-4. Google Scholar

[33]

M. Warma, Approximate controllabilty from the exterior of space-time fractional diffusive equations, SIAM J. Control Optim., 57 (2019), 2037–2063, https://doi.org/10.1137/18M117145X. doi: 10.1137/18M117145X. Google Scholar

[34]

M. Warma and S. Zamorano, Analysis of the controllability from the exterior of strong damping nonlocal wave equations, ESAIM: Control, Optimisation and Calculus of Variations (COCV), (2019), https://doi.org/10.1051/cocv/2019028. doi: 10.1051/cocv/2019028. Google Scholar

[35]

R. M. Young, An Introduction to Nonharmonic Fourier Series, 1st edition, Academic Press, Inc., San Diego, CA, 2001. Google Scholar

[36]

P. Zhuang and F. Liu, Implicit difference approximation for the time fractional diffusion equation, J. Appl. Math. Comput., 22 (2006), 87–99, https://doi.org/10.1007/BF02832039. doi: 10.1007/BF02832039. Google Scholar

[1]

Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305

[2]

Mohamed Ouzahra. Controllability of the semilinear wave equation governed by a multiplicative control. Evolution Equations & Control Theory, 2019, 8 (4) : 669-686. doi: 10.3934/eect.2019039

[3]

Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143-150. doi: 10.3934/proc.2009.2009.143

[4]

Muhammad I. Mustafa. On the control of the wave equation by memory-type boundary condition. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1179-1192. doi: 10.3934/dcds.2015.35.1179

[5]

Eugenio Sinestrari. Wave equation with memory. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 881-896. doi: 10.3934/dcds.1999.5.881

[6]

Qi Lü, Enrique Zuazua. Robust null controllability for heat equations with unknown switching control mode. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4183-4210. doi: 10.3934/dcds.2014.34.4183

[7]

Eduardo Cerpa. Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 91-102. doi: 10.3934/cpaa.2010.9.91

[8]

Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291

[9]

Valentin Keyantuo, Mahamadi Warma. On the interior approximate controllability for fractional wave equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3719-3739. doi: 10.3934/dcds.2016.36.3719

[10]

Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015

[11]

Shirshendu Chowdhury, Debanjana Mitra, Michael Renardy. Null controllability of the incompressible Stokes equations in a 2-D channel using normal boundary control. Evolution Equations & Control Theory, 2018, 7 (3) : 447-463. doi: 10.3934/eect.2018022

[12]

Farid Ammar Khodja, Cherif Bouzidi, Cédric Dupaix, Lahcen Maniar. Null controllability of retarded parabolic equations. Mathematical Control & Related Fields, 2014, 4 (1) : 1-15. doi: 10.3934/mcrf.2014.4.1

[13]

Lianwen Wang. Approximate controllability and approximate null controllability of semilinear systems. Communications on Pure & Applied Analysis, 2006, 5 (4) : 953-962. doi: 10.3934/cpaa.2006.5.953

[14]

Miaomiao Cai, Li Ma. Moving planes for nonlinear fractional Laplacian equation with negative powers. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4603-4615. doi: 10.3934/dcds.2018201

[15]

Peng Gao. Null controllability with constraints on the state for the 1-D Kuramoto-Sivashinsky equation. Evolution Equations & Control Theory, 2015, 4 (3) : 281-296. doi: 10.3934/eect.2015.4.281

[16]

Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations & Control Theory, 2014, 3 (1) : 35-58. doi: 10.3934/eect.2014.3.35

[17]

Sho Matsumoto, Jonathan Novak. A moment method for invariant ensembles. Electronic Research Announcements, 2018, 25: 60-71. doi: 10.3934/era.2018.25.007

[18]

Pierre Lissy. Construction of gevrey functions with compact support using the bray-mandelbrojt iterative process and applications to the moment method in control theory. Mathematical Control & Related Fields, 2017, 7 (1) : 21-40. doi: 10.3934/mcrf.2017002

[19]

Piermarco Cannarsa, Genni Fragnelli, Dario Rocchetti. Null controllability of degenerate parabolic operators with drift. Networks & Heterogeneous Media, 2007, 2 (4) : 695-715. doi: 10.3934/nhm.2007.2.695

[20]

El Mustapha Ait Ben Hassi, Farid Ammar khodja, Abdelkarim Hajjaj, Lahcen Maniar. Carleman Estimates and null controllability of coupled degenerate systems. Evolution Equations & Control Theory, 2013, 2 (3) : 441-459. doi: 10.3934/eect.2013.2.441

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (9)
  • HTML views (42)
  • Cited by (0)

Other articles
by authors

[Back to Top]