# American Institute of Mathematical Sciences

December  2019, 8(4): 785-824. doi: 10.3934/eect.2019038

## A new energy-gap cost functional approach for the exterior Bernoulli free boundary problem

 Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, A4-2 (780) Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

* Corresponding author: J. F. T. Rabago

Received  August 2018 Revised  January 2019 Published  June 2019

The solution to a free boundary problem of Bernoulli type, also known as Alt-Caffarelli problem, is studied via shape optimization techniques. In particular, a novel energy-gap cost functional approach with a state constraint consisting of a Robin condition is proposed as a shape optimization reformulation of the problem. Accordingly, the shape derivative of the cost is explicitly determined, and using the gradient information, a Lagrangian-like method is used to formulate an efficient boundary variation algorithm to numerically solve the minimization problem. The second order shape derivative of the cost is also computed, and through its characterization at the solution of the Bernoulli problem, the ill-posedness of the shape optimization formulation is proved. The analysis of the proposed formulation is completed by addressing the existence of optimal solution of the shape optimization problem and is accomplished by proving the continuity of the solution of the state problems with respect to the domain. The feasibility of the newly proposed method and its comparison with the classical energy-gap type cost functional approach is then presented through various numerical results. The numerical exploration issued in the study also includes results from a second-order optimization procedure based on a Newton-type method for resolving such minimization problem. This computational scheme put forward in the paper utilizes the Hessian information at the optimal solution and thus offers a state-of-the-art numerical approach for solving such free boundary problem via shape optimization setting.

Citation: Julius Fergy T. Rabago, Hideyuki Azegami. A new energy-gap cost functional approach for the exterior Bernoulli free boundary problem. Evolution Equations & Control Theory, 2019, 8 (4) : 785-824. doi: 10.3934/eect.2019038
##### References:
 [1] A. Alt and L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine. Angew. Math., 325 (1981), 105-144. doi: 10.1515/crll.1981.325.105. Google Scholar [2] H. Azegami, Second derivatives of cost functions and $H^1$ Newton method in shape optimization problems, Mathematical Analysis of Continuum Mechanics and Industrial Applications Ⅱ, in Proceedings of the International Conference CoMFoS16 (eds. P. van Meurs, M. Kimura and H. Notsu), vol. 30 of Mathematics for Industry, Springer, Singapore, (2017), 61–72. doi: 10.1007/978-981-10-6283-4_6. Google Scholar [3] H. Azegami, Shape Optimization Problems, Morikita Publishing Co., Ltd., Tokyo, 2016 (in Japanese).Google Scholar [4] H. Azegami, Solution of shape optimization problem and its application to product design, Mathematical Analysis of Continuum Mechanics and Industrial Applications, in Computer Aided Optimization Design of Structures IV, Structural Optimization (eds. H. Itou, M. Kimura, V. Chalupecký, K. Ohtsuka, D. Tagami and A. Takada), vol. 26 of Mathematics for Industry, Springer, Singapore, (2017), 83–98. doi: 10.1007/978-981-10-2633-1_6. Google Scholar [5] H. Azegami, S. Kaizu, M. Shimoda and E. Katamine, Irregularity of shape optimization problems and an improvement technique, in Computer Aided Optimization Design of Structures IV, Structural Optimization (eds. S. Hernandez and C. A. Brebbia), Computational Mechanics Publications, Southampton, (1997), 309–326. doi: 10.2495/OP970301. Google Scholar [6] H. Azegami and Z. Q. Wu, Domain optimization analysis in linear elastic problems: Approach using traction method, SME Int. J., Ser. A., 39 (1996), 272-278. doi: 10.1299/jsmea1993.39.2_272. Google Scholar [7] H. Azegami, M. Shimoda, E. Katamine and Z. C. Wu, A domain optimization technique for elliptic boundary value problems, in Computer Aided Optimization Design of Structures IV, Structural Optimization (eds. S. Hernandez, M. El-Sayed and C. A. Brebbia), Computational Mechanics Publications, Southampton, (1995), 51–58. doi: 10.2495/OP950071. Google Scholar [8] H. Azegami, Solution to domain optimization problems, Trans. Jpn. Soc. Mech. Eng., Ser. A., 60 (1994), 1479–1486 (in Japanese). doi: 10.1299/kikaia.60.1479. Google Scholar [9] J. B. Bacani, Methods of Shape Optimization in Free Boundary Problems, Ph.D. Thesis, Karl-Franzens-Universität-Graz, 2013.Google Scholar [10] J. B. Bacani and G. Peichl, On the first-order shape derivative of the Kohn-Vogelius cost functional of the Bernoulli problem, Abstr. Appl. Anal., 2013 (2013), Art. ID 384320, 19pp. doi: 10.1155/2013/384320. Google Scholar [11] A. Ben Abda, F. Bouchon, G. Peichl, M. Sayeh and R. Touzani, A Dirichlet-Neumann cost functional approach for the Bernoulli problem, J. Eng. Math., 81 (2013), 157-176. doi: 10.1007/s10665-012-9608-3. Google Scholar [12] A. Boulkhemair, A. Nachaoui and A. Chakib, A shape optimization approach for a class of free boundary problems of Bernoulli type, Appl. Math., 58 (2013), 205-221. doi: 10.1007/s10492-013-0010-x. Google Scholar [13] A. Boulkhemair, A. Chakib and A. Nachaoui, Uniform trace theorem and application to shape optimization, Appl. Comput. Math., 7 (2008), 192-205. Google Scholar [14] A. Boulkhemair and A. Chakib, On the uniform Poincaré inequality, Commun. Partial Differ. Equations, 32 (2007), 1439-1447. doi: 10.1080/03605300600910241. Google Scholar [15] D. Chenais, On the existence of a solution in a domain identification problem, J. Math. Anal. Appl., 52 (1975), 189-219. doi: 10.1016/0022-247X(75)90091-8. Google Scholar [16] M. Dambrine, On variations of the shape Hessian and sufficient conditions for the stability of critical shapes, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A. Mat., 96 (2002), 95-121. Google Scholar [17] M. Dambrine and M. Pierre, About stability of equilibrium shapes, Model Math. Anal. Numer., 34 (2000), 811-834. doi: 10.1051/m2an:2000105. Google Scholar [18] M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, 2nd edition, Adv. Des. Control 22, SIAM, Philadelphia, 2011. doi: 10.1137/1.9780898719826. Google Scholar [19] K. Eppler and H. Harbrecht, On a Kohn-Vogelius like formulation of free boundary problems, Comput. Optim. App., 52 (2012), 69-85. doi: 10.1007/s10589-010-9345-3. Google Scholar [20] K. Eppler and H. Harbrecht, A regularized Newton method in electrical impedance tomography using shape Hessian information, Control Cybern., 34 (2005), 203-225. Google Scholar [21] K. Eppler, Boundary integral representations of second derivatives in shape optimization, Discuss. Math. Differ. Incl. Control. Optim., 20 (2000), 63-78. doi: 10.7151/dmdico.1005. Google Scholar [22] K. Eppler, Optimal shape design for elliptic equations via BIE-methods, J. Appl. Math. Comput. Sci., 10 (2000), 487-516. Google Scholar [23] A. Fasano, Some free boundary problems with industrial applications, in Shape Optimization and Free Boundaries (eds. M. C. Delfour and G. Sabidussi), vol. 380 of NATO ASI Series (C: Mathematical and Physical Sciences), Springer, Dordrecht, (1992), 113–142. doi: 10.1007/978-94-011-2710-3_3. Google Scholar [24] M. Flucher and M. Rumpf, Bernoulli's free-boundary problem, qualitative theory and numerical approximation, J. Reine. Angew. Math., 486 (1997), 165-204. doi: 10.1515/crll.1997.486.165. Google Scholar [25] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-New York, 1977. doi: 10.1007/978-3-642-61798-0. Google Scholar [26] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Publishing, Marshfield, Massachusetts, 1985. doi: 10.1137/1.9781611972030. Google Scholar [27] J. Haslinger and R. A. E. Mäkinen, Introduction to Shape Optimization: Theory, Approximation, and Computation, SIAM, Philadelphia, 2003. doi: 10.1137/1.9780898718690. Google Scholar [28] J. Haslinger, T. Kozubek, K. Kunisch and G. Peichl, An embedding domain approach for a class of 2-d shape optimization problems: Mathematical analysis, J. Math. Anal. Appl., 290 (2004), 665-685. doi: 10.1016/j.jmaa.2003.10.038. Google Scholar [29] F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), 251-265. doi: 10.1515/jnum-2012-0013. Google Scholar [30] A. Henrot and M. Pierre, Shape Variation and Optimization: A Geometrical Analysis, Tracts in Mathematics 28, European Mathematical Society, Zürich, 2018. doi: 10.4171/178. Google Scholar [31] K. Ito, K. Kunisch and G. Peichl, Variational approach to shape derivatives, ESAIM Control Optim. Calc. Var., 14 (2008), 517-539. doi: 10.1051/cocv:2008002. Google Scholar [32] T. Kashiwabara, C. M. Colciago, L. Dedè and A. Quarteroni, Well-posedness, regularity, and convergence analysis of the finite element approximation of a generalized Robin boundary value problem, SIAM J. Numer. Anal., 53 (2015), 105-126. doi: 10.1137/140954477. Google Scholar [33] R. Kohn and M. Vogelius, Determining conductivity by boundary measurements, Commun. Pure Appl., 37 (1984), 289-298. doi: 10.1002/cpa.3160370302. Google Scholar [34] R. Kress, On Trefftz' integral equation for the Bernoulli free boundary value problem, Numer. Math., 136 (2017), 503-522. doi: 10.1007/s00211-016-0847-5. Google Scholar [35] J. Nečas, Direct Methods in the Theory of Elliptic Equations, Corrected 2nd edition, Monographs and Studies in Mathematics, Springer, Berlin, Heidelberg, 2012. doi: 10.1007/978-3-642-10455-8. Google Scholar [36] J. W. Neuberger, Sobolev Gradients and Differential Equations, Springer-Verlag, Berlin, 1997. doi: 10.1007/BFb0092831. Google Scholar [37] A. Novruzi and M. Pierre, Structure of shape derivatives, J. Evol. Equ., 2 (2002), 365-382. doi: 10.1007/s00028-002-8093-y. Google Scholar [38] A. Novruzi and J.-R. Roche, Newton's method in shape optimisation: A three-dimensional case, BIT Numer. Math., 40 (2000), 102-120. doi: 10.1023/A:1022370419231. Google Scholar [39] S. Osher and J. Sethian, Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comp. Phys., 79 (1988), 12-49. doi: 10.1016/0021-9991(88)90002-2. Google Scholar [40] A. Quarteroni, R. Sacco and F. Saleri, Numerical Mathematics, vol. 37 of Texts in Applied Mathematics, 2nd edition, Springer, Berlin, 2007. doi: 10.1007/b98885. Google Scholar [41] J. F. T. Rabago and H. Azegami, An improved shape optimization formulation of the Bernoulli problem by tracking the Neumann data, J. Eng. Math., (2019), to appear.Google Scholar [42] J. F. T. Rabago and J. B. Bacani, Shape optimization approach to the Bernoulli problem: A Lagrangian formulation, IAENG Int. J. Appl. Math., 47 (2017), 417-424. Google Scholar [43] J. F. T. Rabago and J. B. Bacani, Shape optimization approach for solving the Bernoulli problem by tracking the Neumann data: a Lagrangian formulation, Commun. Pur. Appl. Anal., 17 (2018), 2683-2702. doi: 10.3934/cpaa.2018127. Google Scholar [44] J. Simon, Second variation for domain optimization problems, in Control and Estimation of Distributed Parameter Systems (eds. F. Kappel, K. Kunisch and W. Schappacher), International Series of Numerical Mathematics, no 91. Birkhäuser, (1989), 361–378. Google Scholar [45] J. Sokołowski and J.-P. Zolésio, Introduction to Shape Optimization, in Introduction to Shape Optimization, vol. 16 of Springer Series in Computational Mathematics, Springer, Berlin, Heidelberg, 1992. doi: 10.1007/978-3-642-58106-9_1. Google Scholar [46] T. Tiihonen, Shape optimization and trial methods for free boundary problems, RAIRO Modél. Math. Anal. Numér., 31 (1997), 805-825. doi: 10.1051/m2an/1997310708051. Google Scholar

show all references

##### References:
 [1] A. Alt and L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine. Angew. Math., 325 (1981), 105-144. doi: 10.1515/crll.1981.325.105. Google Scholar [2] H. Azegami, Second derivatives of cost functions and $H^1$ Newton method in shape optimization problems, Mathematical Analysis of Continuum Mechanics and Industrial Applications Ⅱ, in Proceedings of the International Conference CoMFoS16 (eds. P. van Meurs, M. Kimura and H. Notsu), vol. 30 of Mathematics for Industry, Springer, Singapore, (2017), 61–72. doi: 10.1007/978-981-10-6283-4_6. Google Scholar [3] H. Azegami, Shape Optimization Problems, Morikita Publishing Co., Ltd., Tokyo, 2016 (in Japanese).Google Scholar [4] H. Azegami, Solution of shape optimization problem and its application to product design, Mathematical Analysis of Continuum Mechanics and Industrial Applications, in Computer Aided Optimization Design of Structures IV, Structural Optimization (eds. H. Itou, M. Kimura, V. Chalupecký, K. Ohtsuka, D. Tagami and A. Takada), vol. 26 of Mathematics for Industry, Springer, Singapore, (2017), 83–98. doi: 10.1007/978-981-10-2633-1_6. Google Scholar [5] H. Azegami, S. Kaizu, M. Shimoda and E. Katamine, Irregularity of shape optimization problems and an improvement technique, in Computer Aided Optimization Design of Structures IV, Structural Optimization (eds. S. Hernandez and C. A. Brebbia), Computational Mechanics Publications, Southampton, (1997), 309–326. doi: 10.2495/OP970301. Google Scholar [6] H. Azegami and Z. Q. Wu, Domain optimization analysis in linear elastic problems: Approach using traction method, SME Int. J., Ser. A., 39 (1996), 272-278. doi: 10.1299/jsmea1993.39.2_272. Google Scholar [7] H. Azegami, M. Shimoda, E. Katamine and Z. C. Wu, A domain optimization technique for elliptic boundary value problems, in Computer Aided Optimization Design of Structures IV, Structural Optimization (eds. S. Hernandez, M. El-Sayed and C. A. Brebbia), Computational Mechanics Publications, Southampton, (1995), 51–58. doi: 10.2495/OP950071. Google Scholar [8] H. Azegami, Solution to domain optimization problems, Trans. Jpn. Soc. Mech. Eng., Ser. A., 60 (1994), 1479–1486 (in Japanese). doi: 10.1299/kikaia.60.1479. Google Scholar [9] J. B. Bacani, Methods of Shape Optimization in Free Boundary Problems, Ph.D. Thesis, Karl-Franzens-Universität-Graz, 2013.Google Scholar [10] J. B. Bacani and G. Peichl, On the first-order shape derivative of the Kohn-Vogelius cost functional of the Bernoulli problem, Abstr. Appl. Anal., 2013 (2013), Art. ID 384320, 19pp. doi: 10.1155/2013/384320. Google Scholar [11] A. Ben Abda, F. Bouchon, G. Peichl, M. Sayeh and R. Touzani, A Dirichlet-Neumann cost functional approach for the Bernoulli problem, J. Eng. Math., 81 (2013), 157-176. doi: 10.1007/s10665-012-9608-3. Google Scholar [12] A. Boulkhemair, A. Nachaoui and A. Chakib, A shape optimization approach for a class of free boundary problems of Bernoulli type, Appl. Math., 58 (2013), 205-221. doi: 10.1007/s10492-013-0010-x. Google Scholar [13] A. Boulkhemair, A. Chakib and A. Nachaoui, Uniform trace theorem and application to shape optimization, Appl. Comput. Math., 7 (2008), 192-205. Google Scholar [14] A. Boulkhemair and A. Chakib, On the uniform Poincaré inequality, Commun. Partial Differ. Equations, 32 (2007), 1439-1447. doi: 10.1080/03605300600910241. Google Scholar [15] D. Chenais, On the existence of a solution in a domain identification problem, J. Math. Anal. Appl., 52 (1975), 189-219. doi: 10.1016/0022-247X(75)90091-8. Google Scholar [16] M. Dambrine, On variations of the shape Hessian and sufficient conditions for the stability of critical shapes, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A. Mat., 96 (2002), 95-121. Google Scholar [17] M. Dambrine and M. Pierre, About stability of equilibrium shapes, Model Math. Anal. Numer., 34 (2000), 811-834. doi: 10.1051/m2an:2000105. Google Scholar [18] M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, 2nd edition, Adv. Des. Control 22, SIAM, Philadelphia, 2011. doi: 10.1137/1.9780898719826. Google Scholar [19] K. Eppler and H. Harbrecht, On a Kohn-Vogelius like formulation of free boundary problems, Comput. Optim. App., 52 (2012), 69-85. doi: 10.1007/s10589-010-9345-3. Google Scholar [20] K. Eppler and H. Harbrecht, A regularized Newton method in electrical impedance tomography using shape Hessian information, Control Cybern., 34 (2005), 203-225. Google Scholar [21] K. Eppler, Boundary integral representations of second derivatives in shape optimization, Discuss. Math. Differ. Incl. Control. Optim., 20 (2000), 63-78. doi: 10.7151/dmdico.1005. Google Scholar [22] K. Eppler, Optimal shape design for elliptic equations via BIE-methods, J. Appl. Math. Comput. Sci., 10 (2000), 487-516. Google Scholar [23] A. Fasano, Some free boundary problems with industrial applications, in Shape Optimization and Free Boundaries (eds. M. C. Delfour and G. Sabidussi), vol. 380 of NATO ASI Series (C: Mathematical and Physical Sciences), Springer, Dordrecht, (1992), 113–142. doi: 10.1007/978-94-011-2710-3_3. Google Scholar [24] M. Flucher and M. Rumpf, Bernoulli's free-boundary problem, qualitative theory and numerical approximation, J. Reine. Angew. Math., 486 (1997), 165-204. doi: 10.1515/crll.1997.486.165. Google Scholar [25] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-New York, 1977. doi: 10.1007/978-3-642-61798-0. Google Scholar [26] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Publishing, Marshfield, Massachusetts, 1985. doi: 10.1137/1.9781611972030. Google Scholar [27] J. Haslinger and R. A. E. Mäkinen, Introduction to Shape Optimization: Theory, Approximation, and Computation, SIAM, Philadelphia, 2003. doi: 10.1137/1.9780898718690. Google Scholar [28] J. Haslinger, T. Kozubek, K. Kunisch and G. Peichl, An embedding domain approach for a class of 2-d shape optimization problems: Mathematical analysis, J. Math. Anal. Appl., 290 (2004), 665-685. doi: 10.1016/j.jmaa.2003.10.038. Google Scholar [29] F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), 251-265. doi: 10.1515/jnum-2012-0013. Google Scholar [30] A. Henrot and M. Pierre, Shape Variation and Optimization: A Geometrical Analysis, Tracts in Mathematics 28, European Mathematical Society, Zürich, 2018. doi: 10.4171/178. Google Scholar [31] K. Ito, K. Kunisch and G. Peichl, Variational approach to shape derivatives, ESAIM Control Optim. Calc. Var., 14 (2008), 517-539. doi: 10.1051/cocv:2008002. Google Scholar [32] T. Kashiwabara, C. M. Colciago, L. Dedè and A. Quarteroni, Well-posedness, regularity, and convergence analysis of the finite element approximation of a generalized Robin boundary value problem, SIAM J. Numer. Anal., 53 (2015), 105-126. doi: 10.1137/140954477. Google Scholar [33] R. Kohn and M. Vogelius, Determining conductivity by boundary measurements, Commun. Pure Appl., 37 (1984), 289-298. doi: 10.1002/cpa.3160370302. Google Scholar [34] R. Kress, On Trefftz' integral equation for the Bernoulli free boundary value problem, Numer. Math., 136 (2017), 503-522. doi: 10.1007/s00211-016-0847-5. Google Scholar [35] J. Nečas, Direct Methods in the Theory of Elliptic Equations, Corrected 2nd edition, Monographs and Studies in Mathematics, Springer, Berlin, Heidelberg, 2012. doi: 10.1007/978-3-642-10455-8. Google Scholar [36] J. W. Neuberger, Sobolev Gradients and Differential Equations, Springer-Verlag, Berlin, 1997. doi: 10.1007/BFb0092831. Google Scholar [37] A. Novruzi and M. Pierre, Structure of shape derivatives, J. Evol. Equ., 2 (2002), 365-382. doi: 10.1007/s00028-002-8093-y. Google Scholar [38] A. Novruzi and J.-R. Roche, Newton's method in shape optimisation: A three-dimensional case, BIT Numer. Math., 40 (2000), 102-120. doi: 10.1023/A:1022370419231. Google Scholar [39] S. Osher and J. Sethian, Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comp. Phys., 79 (1988), 12-49. doi: 10.1016/0021-9991(88)90002-2. Google Scholar [40] A. Quarteroni, R. Sacco and F. Saleri, Numerical Mathematics, vol. 37 of Texts in Applied Mathematics, 2nd edition, Springer, Berlin, 2007. doi: 10.1007/b98885. Google Scholar [41] J. F. T. Rabago and H. Azegami, An improved shape optimization formulation of the Bernoulli problem by tracking the Neumann data, J. Eng. Math., (2019), to appear.Google Scholar [42] J. F. T. Rabago and J. B. Bacani, Shape optimization approach to the Bernoulli problem: A Lagrangian formulation, IAENG Int. J. Appl. Math., 47 (2017), 417-424. Google Scholar [43] J. F. T. Rabago and J. B. Bacani, Shape optimization approach for solving the Bernoulli problem by tracking the Neumann data: a Lagrangian formulation, Commun. Pur. Appl. Anal., 17 (2018), 2683-2702. doi: 10.3934/cpaa.2018127. Google Scholar [44] J. Simon, Second variation for domain optimization problems, in Control and Estimation of Distributed Parameter Systems (eds. F. Kappel, K. Kunisch and W. Schappacher), International Series of Numerical Mathematics, no 91. Birkhäuser, (1989), 361–378. Google Scholar [45] J. Sokołowski and J.-P. Zolésio, Introduction to Shape Optimization, in Introduction to Shape Optimization, vol. 16 of Springer Series in Computational Mathematics, Springer, Berlin, Heidelberg, 1992. doi: 10.1007/978-3-642-58106-9_1. Google Scholar [46] T. Tiihonen, Shape optimization and trial methods for free boundary problems, RAIRO Modél. Math. Anal. Numér., 31 (1997), 805-825. doi: 10.1051/m2an/1997310708051. Google Scholar
Initial (left) and final (right) free boundaries for Example 1 with $\alpha = 0.1$ in (57)
(a)-(b): Respective histories of cost values and Hausdorff distances via first-order method with $\alpha = 0.1$ in (57) and varying initial free boundary $\Sigma_0^i$, $i = 1, 2, 3$; (c)-(d): respective histories of cost values and Hausdorff distances via second-order method with $\alpha = 0.1$ in (57) and different initial free boundary $\Sigma_0^i$, $i = 1, 2, 3$
Blue solid lines: Optimal free boundaries for Example 2 when $\lambda = -10, -9, \ldots, -1$ (the outermost boundary corresponds to $\lambda = -1$ and the innermost boundary to $\lambda = -10$); dashed-dot magenta line: initial guess for the free boundary
Results of Example 2 for $\lambda = -9$ when $\eta = 10^{-6}$ in the stopping condition (58) and $\alpha = 0.99$ in (57)
(a): Histories of descent step sizes for the proposed and classical formulations (with almost equal initial step size $t_0$ for the two formulations); (b): optimal free boundaries obtained when $\lambda = -9, -4, -1$ in Example 2 using the proposed and classical formulations with $\eta = 10^{-4}$ in the stopping condition (58)
(a)-(b): histories of free boundaries obtained through the proposed formulation with initial guess $\Sigma_0^1$ and $\Sigma_0^3$, respectively, where $\eta = 10^{-6}$ in (58); (c)-(d): Histories of free boundaries obtained via the classical Kohn-Vogelius formulation with initial guess $\Sigma_0^1$ and $\Sigma_0^3$, respectively, where $\eta = 10^{-4}$ in (58)
(a)-(b): corresponding histories of curvatures of the free boundaries obtained through the proposed formulation with initial guess $\Sigma_0^1$ and $\Sigma_0^3$, respectively, shown in Figure 6a-6b; (c)-(d): Corresponding histories of curvatures of the free boundaries obtained via the classical Kohn-Vogelius formulation with initial guess $\Sigma_0^1$ and $\Sigma_0^3$, respectively, shown in Figure 6c-6d
Blue solid lines: Optimal free boundaries for Example 3 when $\lambda = -10, -9, \ldots, -1$ (the outermost boundary corresponds to $\lambda = -1$ and the innermost boundary to $\lambda = -10$); dashed-dot magenta line: initial guess for the free boundary
Results of Example 3 when $\lambda = -10, -4, -1$ for both of the proposed and classical formulations
(a)-(b): histories of free boundaries obtained through the proposed formulation with initial guess $C(\boldsymbol{0}, 0.6)$ and $\Upsilon$, respectively, where $\eta = 10^{-6}$ in (58); (c)-(d): histories of free boundaries obtained via the classical Kohn-Vogelius formulation with initial guess $C(\boldsymbol{0}, 0.6)$ and $\Upsilon$, respectively, where $\eta = 10^{-4}$ in (58)
(a)-(b): Corresponding histories of curvatures of the free boundaries obtained through the proposed formulation with initial guess $\Sigma_0^1$ and $\Sigma_0^3$ shown in Figure 10a-10b, respectively; (c)-(d): corresponding histories of curvatures of the free boundaries obtained via the classical Kohn-Vogelius formulation with initial guess $\Sigma_0^1$ and $\Sigma_0^3$ shown in Figure 10c-10d, respectively
Convergence test toward exact solution using the proposed formulation via the modified $H^1$-gradient method with initial free boundaries $\Sigma_0^i$, $i = 1, 2, 3$, and $\alpha = 0.10, 0.50, 0.99$ in (57)
 $\Sigma_0^i$ $\alpha$ cost ${\rm d}_{\rm H}(\Sigma^\ast, \Sigma^i_f)$ $\bar{R}$ $|R - \bar{R}|/R$ iter. cpu time $\Sigma_0^1$ 0.10 $2.85 \times 10^{-5}$ $0.005072$ $0.500888$ 0.001776 72 115 sec 0.50 $2.32 \times 10^{-7}$ $0.004983$ $0.500002$ 0.000004 17 26 sec 0.99 $8.55 \times 10^{-8}$ $0.004984$ $0.499865$ 0.000270 8 12 sec $\Sigma_0^2$ 0.10 $1.77 \times 10^{-5}$ $0.005044$ $0.499343$ 0.001314 70 103 sec 0.50 $9.26 \times 10^{-7}$ $0.005003$ $0.499878$ 0.000244 16 28 sec 0.99 $3.91 \times 10^{-9}$ $0.004998$ $0.499956$ 0.000088 7 14 sec $\Sigma_0^3$ 0.10 $1.65 \times 10^{-5}$ $0.005887$ $0.500051$ 0.000102 76 122 sec 0.50 $6.64 \times 10^{-7}$ $0.004991$ $0.500002$ 0.000004 19 29 sec 0.99 $8.77 \times 10^{-7}$ $0.005001$ $0.499993$ 0.000014 9 13 sec
 $\Sigma_0^i$ $\alpha$ cost ${\rm d}_{\rm H}(\Sigma^\ast, \Sigma^i_f)$ $\bar{R}$ $|R - \bar{R}|/R$ iter. cpu time $\Sigma_0^1$ 0.10 $2.85 \times 10^{-5}$ $0.005072$ $0.500888$ 0.001776 72 115 sec 0.50 $2.32 \times 10^{-7}$ $0.004983$ $0.500002$ 0.000004 17 26 sec 0.99 $8.55 \times 10^{-8}$ $0.004984$ $0.499865$ 0.000270 8 12 sec $\Sigma_0^2$ 0.10 $1.77 \times 10^{-5}$ $0.005044$ $0.499343$ 0.001314 70 103 sec 0.50 $9.26 \times 10^{-7}$ $0.005003$ $0.499878$ 0.000244 16 28 sec 0.99 $3.91 \times 10^{-9}$ $0.004998$ $0.499956$ 0.000088 7 14 sec $\Sigma_0^3$ 0.10 $1.65 \times 10^{-5}$ $0.005887$ $0.500051$ 0.000102 76 122 sec 0.50 $6.64 \times 10^{-7}$ $0.004991$ $0.500002$ 0.000004 19 29 sec 0.99 $8.77 \times 10^{-7}$ $0.005001$ $0.499993$ 0.000014 9 13 sec
Convergence test toward exact solution using the proposed formulation via the modified $H^1$-Newton method with $\alpha = 0.1$ and different initial free boundary $\Sigma_0^i$, $i = 1, 2, 3$
 $\alpha$ $\Sigma_0^i$ cost ${\rm d}_{\rm H}(\Sigma^\ast, \Sigma^i_f)$ $\bar{R}$ $|R - \bar{R}|/R$ iter. cpu time $0.1$ $\Sigma_0^1$ $6.17 \times 10^{-7}$ $0.005007$ $0.500139$ 0.000278 7 25 sec $\Sigma_0^2$ $1.57 \times 10^{-8}$ $0.005003$ $0.500013$ 0.000026 8 41 sec $\Sigma_0^3$ $4.47 \times 10^{-6}$ $0.005130$ $0.500101$ 0.000202 14 35 sec
 $\alpha$ $\Sigma_0^i$ cost ${\rm d}_{\rm H}(\Sigma^\ast, \Sigma^i_f)$ $\bar{R}$ $|R - \bar{R}|/R$ iter. cpu time $0.1$ $\Sigma_0^1$ $6.17 \times 10^{-7}$ $0.005007$ $0.500139$ 0.000278 7 25 sec $\Sigma_0^2$ $1.57 \times 10^{-8}$ $0.005003$ $0.500013$ 0.000026 8 41 sec $\Sigma_0^3$ $4.47 \times 10^{-6}$ $0.005130$ $0.500101$ 0.000202 14 35 sec
Summary of computational results for an L-shaped fixed boundary $\Gamma = \partial S$ with $\lambda = -10, -9, \ldots, -1$ where $\alpha = 0.99$ in (57) and $\eta = 10^{-6}$ in the stopping condition (58)
 $\lambda$ formulation $t_0$ cost iteration cpu time $-10$ proposed $0.228150$ $1.37 \times 10^{-6}$ $14$ $14$ sec classical $0.767890$ $0.000137$ $19$ $55$ sec $-9$ proposed $0.221636$ $6.25 \times 10^{-7}$ $13$ $16$ sec classical $0.738627$ $3.11 \times 10^{-5}$ $25$ $96$ sec $-8$ proposed $0.213501$ $7.94 \times 10^{-7}$ $12$ $14$ sec classical $0.702851$ $7.17 \times 10^{-5}$ $19$ $57$ sec $-7$ proposed $0.203058$ $1.23 \times 10^{-6}$ $10$ $13$ sec classical $0.658125$ $0.000628$ $12$ $34$ sec $-6$ proposed $0.189163$ $8.27 \times 10^{-7}$ $10$ $14$ sec classical $0.600640$ $0.000190$ $13$ $34$ sec $-5$ proposed $0.169783$ $2.61 \times 10^{-7}$ $10$ $16$ sec classical $0.524113$ $0.000948$ $18$ $54$ sec $-4$ proposed $0.140942$ $2.04 \times 10^{-7}$ $10$ $17$ sec classical $0.417590$ $0.000186$ $8$ $24$ sec $-3$ proposed $0.094111$ $5.68 \times 10^{-7}$ $9$ $14$ sec classical $0.262124$ $4.95 \times 10^{-5}$ $11$ $29$ sec $-2$ proposed $0.039805$ $2.37 \times 10^{-7}$ $10$ $17$ sec classical $0.120956$ $6.48 \times 10^{-6}$ $10$ $27$ sec $-1$ proposed $0.312388$ $1.08 \times 10^{-6}$ $13$ $25$ sec classical $0.615256$ $5.69 \times 10^{-7}$ $9$ $24$ sec
 $\lambda$ formulation $t_0$ cost iteration cpu time $-10$ proposed $0.228150$ $1.37 \times 10^{-6}$ $14$ $14$ sec classical $0.767890$ $0.000137$ $19$ $55$ sec $-9$ proposed $0.221636$ $6.25 \times 10^{-7}$ $13$ $16$ sec classical $0.738627$ $3.11 \times 10^{-5}$ $25$ $96$ sec $-8$ proposed $0.213501$ $7.94 \times 10^{-7}$ $12$ $14$ sec classical $0.702851$ $7.17 \times 10^{-5}$ $19$ $57$ sec $-7$ proposed $0.203058$ $1.23 \times 10^{-6}$ $10$ $13$ sec classical $0.658125$ $0.000628$ $12$ $34$ sec $-6$ proposed $0.189163$ $8.27 \times 10^{-7}$ $10$ $14$ sec classical $0.600640$ $0.000190$ $13$ $34$ sec $-5$ proposed $0.169783$ $2.61 \times 10^{-7}$ $10$ $16$ sec classical $0.524113$ $0.000948$ $18$ $54$ sec $-4$ proposed $0.140942$ $2.04 \times 10^{-7}$ $10$ $17$ sec classical $0.417590$ $0.000186$ $8$ $24$ sec $-3$ proposed $0.094111$ $5.68 \times 10^{-7}$ $9$ $14$ sec classical $0.262124$ $4.95 \times 10^{-5}$ $11$ $29$ sec $-2$ proposed $0.039805$ $2.37 \times 10^{-7}$ $10$ $17$ sec classical $0.120956$ $6.48 \times 10^{-6}$ $10$ $27$ sec $-1$ proposed $0.312388$ $1.08 \times 10^{-6}$ $13$ $25$ sec classical $0.615256$ $5.69 \times 10^{-7}$ $9$ $24$ sec
Computational results obtained via the classical formulation with $\eta = 10^{-6}$ in the stopping condition (58) for an L-shaped fixed boundary $\Gamma = \partial S$ when $\lambda = -9, -4, -1$ for different values of $\alpha$ in (57)
 $\lambda$ $i$ $\alpha_i$ $t_0$ cost iteration cpu time $-9$ $1$ $0.2970642705$ $0.2216361137$ $1.34 \times 10^{-5}$ $22$ $74$ sec $2$ $0.2970642710$ $0.2216361144$ $3.70 \times 10^{-5}$ $18$ $102$ sec $3$ $0.2970642715$ $0.2216361144$ $6.40 \times 10^{-5}$ $17$ $32$ sec $-4$ $1$ $0.334138300$ $0.1409423055$ $1.03 \times 10^{-5}$ $11$ $23$ sec $2$ $0.334138305$ $0.1409423076$ $4.57 \times 10^{-6}$ $12$ $26$ sec $3$ $0.334138310$ $0.1409423098$ $4.92 \times 10^{-5}$ $14$ $40$ sec $-1$ $1$ $0.502658435$ $0.3123875250$ $1.34 \times 10^{-6}$ $14$ $34$ sec $2$ $0.502658440$ $0.3123875282$ $1.17 \times 10^{-6}$ $14$ $35$ sec $3$ $0.502658445$ $0.3123875313$ $1.24 \times 10^{-6}$ $14$ $34$ sec
 $\lambda$ $i$ $\alpha_i$ $t_0$ cost iteration cpu time $-9$ $1$ $0.2970642705$ $0.2216361137$ $1.34 \times 10^{-5}$ $22$ $74$ sec $2$ $0.2970642710$ $0.2216361144$ $3.70 \times 10^{-5}$ $18$ $102$ sec $3$ $0.2970642715$ $0.2216361144$ $6.40 \times 10^{-5}$ $17$ $32$ sec $-4$ $1$ $0.334138300$ $0.1409423055$ $1.03 \times 10^{-5}$ $11$ $23$ sec $2$ $0.334138305$ $0.1409423076$ $4.57 \times 10^{-6}$ $12$ $26$ sec $3$ $0.334138310$ $0.1409423098$ $4.92 \times 10^{-5}$ $14$ $40$ sec $-1$ $1$ $0.502658435$ $0.3123875250$ $1.34 \times 10^{-6}$ $14$ $34$ sec $2$ $0.502658440$ $0.3123875282$ $1.17 \times 10^{-6}$ $14$ $35$ sec $3$ $0.502658445$ $0.3123875313$ $1.24 \times 10^{-6}$ $14$ $34$ sec
Comparison of computational results obtained through the proposed and classical formulations with $\eta = 10^{-4}$ in (58) for an L-shaped fixed boundary $\Gamma = \partial S$ when $\lambda = -9, -4, -1$ with almost the same initial step size $t_0$ for both formulations
 $\lambda$ formulation $\alpha$ $t_0$ cost iteration cpu time $-9$ proposed $0.990000000$ $0.2216361144$ $1.55 \times 10^{-5}$ $9$ $10$ sec classical $0.297064271$ $0.2216361144$ $14.2 \times 10^{-5}$ $12$ $16$ sec $-4$ proposed $0.990000000$ $0.1409423086$ $6.37 \times 10^{-6}$ $7$ $11$ sec classical $0.334138305$ $0.1409423076$ $4.57 \times 10^{-6}$ $7$ $11$ sec $-1$ proposed $0.990000000$ $0.3123875327$ $4.39 \times 10^{-5}$ $8$ $17$ sec classical $0.502658440$ $0.3123875282$ $5.51 \times 10^{-5}$ $9$ $24$ sec
 $\lambda$ formulation $\alpha$ $t_0$ cost iteration cpu time $-9$ proposed $0.990000000$ $0.2216361144$ $1.55 \times 10^{-5}$ $9$ $10$ sec classical $0.297064271$ $0.2216361144$ $14.2 \times 10^{-5}$ $12$ $16$ sec $-4$ proposed $0.990000000$ $0.1409423086$ $6.37 \times 10^{-6}$ $7$ $11$ sec classical $0.334138305$ $0.1409423076$ $4.57 \times 10^{-6}$ $7$ $11$ sec $-1$ proposed $0.990000000$ $0.3123875327$ $4.39 \times 10^{-5}$ $8$ $17$ sec classical $0.502658440$ $0.3123875282$ $5.51 \times 10^{-5}$ $9$ $24$ sec
Comparison of computational results obtained through the proposed and classical formulations for an L-shaped fixed boundary $\Gamma = \partial S$ when $\lambda = -10$ with almost the same initial step size $t_0$ for both formulations
 $\Sigma_0^i$ formulation $\eta$ cost ${\rm d}_{\rm H}(\Sigma^{\rm in}, \Sigma^i_f)$ iteration cpu time $\Sigma_0^1$ proposed $10^{-4}$ $2.93 \times 10^{-5}$ $0.023850$ $9$ $10$ sec $10^{-5}$ $4.46 \times 10^{-6}$ $0.008586$ $12$ $13$ sec $10^{-6}$ $1.38 \times 10^{-6}$ $0.008586$ $14$ $14$ sec classical $10^{-4}$ $0.001627$ $0.008435$ $9$ $14$ sec $10^{-5}$ $0.001627$ $0.010512$ $9$ $14$ sec $10^{-6}$ $0.000224$ $0.007484$ $15$ $30$ sec $\Sigma_0^3$ proposed $10^{-4}$ $5.69 \times 10^{-5}$ $0.026360$ $8$ $9$ sec $10^{-5}$ $1.22 \times 10^{-5}$ $0.008565$ $10$ $10$ sec $10^{-6}$ $9.47 \times 10^{-7}$ $0.007675$ $14$ $14$ sec classical $10^{-4}$ $0.000644$ $0.008637$ $9$ $15$ sec $10^{-5}$ $0.000062$ $0.007394$ $15$ $30$ sec $10^{-6}$ $0.000027$ $0.007394$ $19$ $114$ sec
 $\Sigma_0^i$ formulation $\eta$ cost ${\rm d}_{\rm H}(\Sigma^{\rm in}, \Sigma^i_f)$ iteration cpu time $\Sigma_0^1$ proposed $10^{-4}$ $2.93 \times 10^{-5}$ $0.023850$ $9$ $10$ sec $10^{-5}$ $4.46 \times 10^{-6}$ $0.008586$ $12$ $13$ sec $10^{-6}$ $1.38 \times 10^{-6}$ $0.008586$ $14$ $14$ sec classical $10^{-4}$ $0.001627$ $0.008435$ $9$ $14$ sec $10^{-5}$ $0.001627$ $0.010512$ $9$ $14$ sec $10^{-6}$ $0.000224$ $0.007484$ $15$ $30$ sec $\Sigma_0^3$ proposed $10^{-4}$ $5.69 \times 10^{-5}$ $0.026360$ $8$ $9$ sec $10^{-5}$ $1.22 \times 10^{-5}$ $0.008565$ $10$ $10$ sec $10^{-6}$ $9.47 \times 10^{-7}$ $0.007675$ $14$ $14$ sec classical $10^{-4}$ $0.000644$ $0.008637$ $9$ $15$ sec $10^{-5}$ $0.000062$ $0.007394$ $15$ $30$ sec $10^{-6}$ $0.000027$ $0.007394$ $19$ $114$ sec
Computational results obtained through the classical formulation with $\eta = 10^{-4}$ in (58) for an L-shaped fixed boundary $\Gamma = \partial S$ for $\lambda = -10, -8, -7, -6, -5, -3, -2$ with almost the same initial step size $t_0$ with respect to that of the proposed formulation shown in Table 3
 $\lambda$ $\alpha$ $t_0$ cost iteration cpu time $-10$ $0.29414181$ $0.22815001$ $0.001628$ $9$ $14$ sec $-8$ $0.30072761$ $0.21350176$ $0.000119$ $12$ $17$ sec $-7$ $0.30545458$ $0.20305801$ $0.001727$ $10$ $17$ sec $-6$ $0.31178679$ $0.18916314$ $0.000137$ $8$ $13$ sec $-5$ $0.32070413$ $0.16978307$ $0.000925$ $6$ $10$ sec $-3$ $0.35544029$ $0.09411051$ $7.89 \times 10^{-5}$ $6$ $14$ sec $-2$ $0.32579718$ $0.03980505$ $2.08 \times 10^{-5}$ $7$ $14$ sec
 $\lambda$ $\alpha$ $t_0$ cost iteration cpu time $-10$ $0.29414181$ $0.22815001$ $0.001628$ $9$ $14$ sec $-8$ $0.30072761$ $0.21350176$ $0.000119$ $12$ $17$ sec $-7$ $0.30545458$ $0.20305801$ $0.001727$ $10$ $17$ sec $-6$ $0.31178679$ $0.18916314$ $0.000137$ $8$ $13$ sec $-5$ $0.32070413$ $0.16978307$ $0.000925$ $6$ $10$ sec $-3$ $0.35544029$ $0.09411051$ $7.89 \times 10^{-5}$ $6$ $14$ sec $-2$ $0.32579718$ $0.03980505$ $2.08 \times 10^{-5}$ $7$ $14$ sec
Means and standard deviations (std) of the number of iterations, computing time and computing time per iteration for the proposed formulation with $\eta = 10^{-6}$ and classical formulation with $\eta = 10^{-4}$ in (58)
 formulation iteration cpu time $\frac{\rm cpu\ time}{\rm iteration}$ mean std mean std mean std proposed $\approx 11 (11.1)$ $\approx 2 (1.73)$ $16$ $3.46$ $1.46$ $0.29$ classical $\approx 9 (8.6)$ $\approx 2 (2.22)$ $15$ $3.92$ $1.77$ $0.42$
 formulation iteration cpu time $\frac{\rm cpu\ time}{\rm iteration}$ mean std mean std mean std proposed $\approx 11 (11.1)$ $\approx 2 (1.73)$ $16$ $3.46$ $1.46$ $0.29$ classical $\approx 9 (8.6)$ $\approx 2 (2.22)$ $15$ $3.92$ $1.77$ $0.42$
Summary of computational results of Example 3 for $\lambda = -10, -9, \ldots, -1$ where the highlighted rows correspond to the results due to the proposed formulation
 $\lambda$ $\alpha$ $t_0$ cost iter cpu time $-10$ $0.990000000$ $0.337420581$ $1.33 \times 10^{-7}$ $14$ $14$ sec $0.386646216$ $0.337420581$ $0.001223$ $15$ $24$ sec $-9$ $0.990000000$ $0.331971040$ $5.73 \times 10^{-7}$ $13$ $16$ sec $0.388463867$ $0.331971040$ $0.000473$ $11$ $20$ sec $-8$ $0.990000000$ $0.325160189$ $5.07 \times 10^{-7}$ $13$ $14$ sec $0.390736229$ $0.325160189$ $0.000582$ $10$ $17$ sec $-7$ $0.990000000$ $0.316405255$ $3.36 \times 10^{-7}$ $12$ $18$ sec $0.393657966$ $0.316405255$ $0.000745$ $10$ $16$ sec $-6$ $0.990000000$ $0.304735585$ $3.79 \times 10^{-7}$ $11$ $14$ sec $0.397552887$ $0.304735585$ $9.84 \times 10^{-5}$ $12$ $20$ sec $-5$ $0.990000000$ $0.288405794$ $3.33 \times 10^{-7}$ $11$ $13$ sec $0.403001262$ $0.288405794$ $4.38 \times 10^{-5}$ $13$ $18$ sec $-4$ $0.990000000$ $0.263931464$ $2.09 \times 10^{-7}$ $11$ $14$ sec $0.411150343$ $0.263931464$ $2.25 \times 10^{-5}$ $9$ $16$ sec $-3$ $0.990000000$ $0.223215311$ $1.45 \times 10^{-7}$ $11$ $13$ sec $0.424571657$ $0.223215311$ $3.88 \times 10^{-5}$ $7$ $11$ sec $-2$ $0.990000000$ $0.142355886$ $1.70 \times 10^{-7}$ $10$ $17$ sec $0.448686986$ $0.142355886$ $1.30 \times 10^{-5}$ $7$ $13$ sec $-1$ $0.990000000$ $0.111335863$ $9.21 \times 10^{-7}$ $12$ $23$ sec $0.482819584$ $0.111335863$ $3.54 \times 10^{-5}$ $8$ $16$ sec
 $\lambda$ $\alpha$ $t_0$ cost iter cpu time $-10$ $0.990000000$ $0.337420581$ $1.33 \times 10^{-7}$ $14$ $14$ sec $0.386646216$ $0.337420581$ $0.001223$ $15$ $24$ sec $-9$ $0.990000000$ $0.331971040$ $5.73 \times 10^{-7}$ $13$ $16$ sec $0.388463867$ $0.331971040$ $0.000473$ $11$ $20$ sec $-8$ $0.990000000$ $0.325160189$ $5.07 \times 10^{-7}$ $13$ $14$ sec $0.390736229$ $0.325160189$ $0.000582$ $10$ $17$ sec $-7$ $0.990000000$ $0.316405255$ $3.36 \times 10^{-7}$ $12$ $18$ sec $0.393657966$ $0.316405255$ $0.000745$ $10$ $16$ sec $-6$ $0.990000000$ $0.304735585$ $3.79 \times 10^{-7}$ $11$ $14$ sec $0.397552887$ $0.304735585$ $9.84 \times 10^{-5}$ $12$ $20$ sec $-5$ $0.990000000$ $0.288405794$ $3.33 \times 10^{-7}$ $11$ $13$ sec $0.403001262$ $0.288405794$ $4.38 \times 10^{-5}$ $13$ $18$ sec $-4$ $0.990000000$ $0.263931464$ $2.09 \times 10^{-7}$ $11$ $14$ sec $0.411150343$ $0.263931464$ $2.25 \times 10^{-5}$ $9$ $16$ sec $-3$ $0.990000000$ $0.223215311$ $1.45 \times 10^{-7}$ $11$ $13$ sec $0.424571657$ $0.223215311$ $3.88 \times 10^{-5}$ $7$ $11$ sec $-2$ $0.990000000$ $0.142355886$ $1.70 \times 10^{-7}$ $10$ $17$ sec $0.448686986$ $0.142355886$ $1.30 \times 10^{-5}$ $7$ $13$ sec $-1$ $0.990000000$ $0.111335863$ $9.21 \times 10^{-7}$ $12$ $23$ sec $0.482819584$ $0.111335863$ $3.54 \times 10^{-5}$ $8$ $16$ sec
Means and standard deviations (std) of the number of iterations, computing time and computing time per iteration of the computational results shown in Table 9
 formulation iteration cpu time $\frac{\rm cpu\ time}{\rm iteration}$ mean std mean std mean std proposed $\approx 12 (11.8)$ $\approx 1 (1.23)$ $16.5$ $3.41$ $1.46$ $0.34$ classical $\approx 10 (10.2)$ $\approx 3 (2.61)$ $17.1$ $3.70$ $1.77$ $0.17$
 formulation iteration cpu time $\frac{\rm cpu\ time}{\rm iteration}$ mean std mean std mean std proposed $\approx 12 (11.8)$ $\approx 1 (1.23)$ $16.5$ $3.41$ $1.46$ $0.34$ classical $\approx 10 (10.2)$ $\approx 3 (2.61)$ $17.1$ $3.70$ $1.77$ $0.17$
 [1] Barbara Kaltenbacher, Gunther Peichl. The shape derivative for an optimization problem in lithotripsy. Evolution Equations & Control Theory, 2016, 5 (3) : 399-430. doi: 10.3934/eect.2016011 [2] Julius Fergy T. Rabago, Jerico B. Bacani. Shape optimization approach for solving the Bernoulli problem by tracking the Neumann data: A Lagrangian formulation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2683-2702. doi: 10.3934/cpaa.2018127 [3] Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825 [4] Jaroslav Haslinger, Raino A. E. Mäkinen, Jan Stebel. Shape optimization for Stokes problem with threshold slip boundary conditions. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1281-1301. doi: 10.3934/dcdss.2017069 [5] Roman Chapko. On a Hybrid method for shape reconstruction of a buried object in an elastostatic half plane. Inverse Problems & Imaging, 2009, 3 (2) : 199-210. doi: 10.3934/ipi.2009.3.199 [6] Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623 [7] A. M. Bagirov, Moumita Ghosh, Dean Webb. A derivative-free method for linearly constrained nonsmooth optimization. Journal of Industrial & Management Optimization, 2006, 2 (3) : 319-338. doi: 10.3934/jimo.2006.2.319 [8] Benedict Geihe, Martin Rumpf. A posteriori error estimates for sequential laminates in shape optimization. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1377-1392. doi: 10.3934/dcdss.2016055 [9] Günter Leugering, Jan Sokołowski, Antoni Żochowski. Control of crack propagation by shape-topological optimization. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2625-2657. doi: 10.3934/dcds.2015.35.2625 [10] Markus Muhr, Vanja Nikolić, Barbara Wohlmuth, Linus Wunderlich. Isogeometric shape optimization for nonlinear ultrasound focusing. Evolution Equations & Control Theory, 2019, 8 (1) : 163-202. doi: 10.3934/eect.2019010 [11] Liqun Qi, Zheng yan, Hongxia Yin. Semismooth reformulation and Newton's method for the security region problem of power systems. Journal of Industrial & Management Optimization, 2008, 4 (1) : 143-153. doi: 10.3934/jimo.2008.4.143 [12] Guanghui Zhou, Qin Ni, Meilan Zeng. A scaled conjugate gradient method with moving asymptotes for unconstrained optimization problems. Journal of Industrial & Management Optimization, 2017, 13 (2) : 595-608. doi: 10.3934/jimo.2016034 [13] El-Sayed M.E. Mostafa. A nonlinear conjugate gradient method for a special class of matrix optimization problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 883-903. doi: 10.3934/jimo.2014.10.883 [14] Jueyou Li, Guoquan Li, Zhiyou Wu, Changzhi Wu, Xiangyu Wang, Jae-Myung Lee, Kwang-Hyo Jung. Incremental gradient-free method for nonsmooth distributed optimization. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1841-1857. doi: 10.3934/jimo.2017021 [15] Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018149 [16] Liang Zhang, Wenyu Sun, Raimundo J. B. de Sampaio, Jinyun Yuan. A wedge trust region method with self-correcting geometry for derivative-free optimization. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 169-184. doi: 10.3934/naco.2015.5.169 [17] Xing Li, Chungen Shen, Lei-Hong Zhang. A projected preconditioned conjugate gradient method for the linear response eigenvalue problem. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 389-412. doi: 10.3934/naco.2018025 [18] Lekbir Afraites, Marc Dambrine, Karsten Eppler, Djalil Kateb. Detecting perfectly insulated obstacles by shape optimization techniques of order two. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 389-416. doi: 10.3934/dcdsb.2007.8.389 [19] Jan Sokołowski, Jan Stebel. Shape optimization for non-Newtonian fluids in time-dependent domains. Evolution Equations & Control Theory, 2014, 3 (2) : 331-348. doi: 10.3934/eect.2014.3.331 [20] Afaf Bouharguane, Pascal Azerad, Frédéric Bouchette, Fabien Marche, Bijan Mohammadi. Low complexity shape optimization & a posteriori high fidelity validation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 759-772. doi: 10.3934/dcdsb.2010.13.759

2018 Impact Factor: 1.048

## Tools

Article outline

Figures and Tables