December  2019, 8(4): 755-784. doi: 10.3934/eect.2019037

On some nonlinear problem for the thermoplate equations

1. 

Department of Pure and Applied Mathematics, Graduate School of Waseda Univeristy, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan

2. 

Department of Mathematics, Faculty of Science and Technology, Syarif Hiayatullah State Islamic University, Jl. Ir. H. Juanda No. 95, Ciputat Tangerang 15412, Indonesia

3. 

Faculty of Industrial Science and Technology, Tokyo University of Science, 102-1 Tomino, Oshamambe-cho, Yamakoshi-gun, Hokkaido 049-3514, Japan

4. 

Department of Pure and Applied Mathematics and Research Institute of Science and Engineering, Waseda Univeristy, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan

5. 

Department of Mechanical Engineering and Material Science, University of Pittsburgh, USA

* Corresponding author: Suma'inna

Received  July 2018 Revised  January 2019 Published  June 2019

In this paper, we prove the local and global well-posedness of some nonlinear thermoelastic plate equations with Dirichlet boundary conditions. The main tool for proving the local well-posedness is the maximal $ L_p $-$ L_q $ regularity theorem for the linearized equations, and the main tool for proving the global well-posedness is the exponential stability of $ C_0 $ analytic semigroup associated with linear thermoelastic plate equations with Dirichlet boundary conditions.

Citation: Suma'inna, Hirokazu Saito, Yoshihiro Shibata. On some nonlinear problem for the thermoplate equations. Evolution Equations & Control Theory, 2019, 8 (4) : 755-784. doi: 10.3934/eect.2019037
References:
[1]

J. Bourgain, Vector-valued singular integrals and the H1-BMO duality, Probability Theory and Harmonic Analysis, Monogr. Textbooks Pure Appl. Math., Dekker, New York, 98 (1986), 1–19. Google Scholar

[2]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer Monographs in Mathematics, Springer, New York, 2010, Well-posedness and long-time dynamics. doi: 10.1007/978-0-387-87712-9. Google Scholar

[3]

R. Denk, M. Hieber and J. Prüss, $\mathcal{R}$-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166 (2003), viii+114 pp. doi: 10.1090/memo/0788. Google Scholar

[4]

R. Denk and R. Racke, Lp-resolvent estimates and time decay for generalized thermoelastic plate equations, Electron. J. Differential Equations (electronic), 48 (2006), 16pp. Google Scholar

[5]

R. DenkR. Racke and Y. Shibata, Lp theory for the linear thermoelastic plate equations in bounded and exterior domains, Adv. Differential Equations, 14 (2009), 685-715. Google Scholar

[6]

R. DenkR. Racke and Y. Shibata, Local energy decay estimate of soluions to the thermoelastic plate equations in two- and three-dimensional exterior domains, Z. Anal. Anwend., 29 (2010), 21-62. doi: 10.4171/ZAA/1396. Google Scholar

[7]

R. Denk and R. Schnaubelt, A structurally damped plate equations with Dirichlet-Neumann boundary conditions, J. Differential Equations, 259 (2015), 1323-1353. doi: 10.1016/j.jde.2015.02.043. Google Scholar

[8]

R. Denk and Y. Shibata, Maximal regularity for the thermoelastic plate equations with free boundary conditions, J. Evolution Equations, 17 (2017), 215-261. doi: 10.1007/s00028-016-0367-x. Google Scholar

[9]

R. Denk and Y. Shibata, Generation of semigroups for the thermoelastic plate equation with free boundary conditions, preprint.Google Scholar

[10]

Y. Enomoto and Y. Shibata, On the $\mathcal{R}$-sectoriality and the initial boundary value problem for the viscous compressible fluid flow, Funkcial. Ekvac., 56 (2013), 441-505. doi: 10.1619/fesi.56.441. Google Scholar

[11]

Su ma'inna, The existence of $ {\mathcal R}$-bounded solution operators of the thermoelastic plate equation with Dirichlet boundary conditions, Math. Methods Appl. Sci., 41 (2018), 1578-1599. doi: 10.1002/mma.4687. Google Scholar

[12]

J. U. Kim, On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889-899. doi: 10.1137/0523047. Google Scholar

[13]

P. C. Kunstmann and L. Weis, Maximal Lp-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty$-functional calculus, Functional Analytic Methods for Evolution Equations, Lecture Notes in Math., Springer, Berlin, 1855 (2004), 65–311. doi: 10.1007/978-3-540-44653-8_2. Google Scholar

[14]

J. E. Lagnese, Boundary Stabilization of Thin Plates, 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989. doi: 10.1137/1.9781611970821. Google Scholar

[15]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations, Volume 1, Abstract Parabolic Systems: Continuous and Approximation, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Chapter 3, 2000.Google Scholar

[16]

I. Lasiecka and R. Triggiani, Analyticity, and lack thereof, of thermo-elastic semigroups, In Control and Partial Differential Equations (Marseille-Luminy, 1997), ESAIM Proc., 4, Soc. Math. Appl. Indust., Paris, 4 (1998), 199–222. doi: 10.1051/proc:1998029. Google Scholar

[17]

I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with free boundary conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 27 (1998), 457–482. Google Scholar

[18]

I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with coupled hinged/Neumann B.C., Abstr. Appl. Anal., 3 (1998), 153-169. doi: 10.1155/S1085337598000487. Google Scholar

[19]

I. Lasiecka and M. Wilke, Maximal regularity and global existence of soluiotns to a quasilinear thermoelastic plate system, Discrete Contin. Dyn. Syst., 33 (2013), 5189-5202. doi: 10.3934/dcds.2013.33.5189. Google Scholar

[20]

I. LasieckaS. Maad and A. Sasane, Existence and exponential decay of solutions to a quasilinear thermoelastic plate system, Nonlinear Differential Equations and Applications NoDEA, 16 (2008), 689-715. doi: 10.1007/s00030-008-0011-8. Google Scholar

[21]

K. Liu and Z. Liu, Exponential stability and analyticity of abstract linear thermoelastic systems, Z. Angew. Math. Phys., 48 (1997), 885-904. doi: 10.1007/s000330050071. Google Scholar

[22]

Z. Liu and J. Yong, Qualitative properties of certain C0 semigroups arising in elastic systems with varioius dampings, Adv. Differential Equations, 3 (1998), 643-686. Google Scholar

[23]

Z.-Y. Liu and M. Renardy, A note on the equations of a thermoelastic plate, Appl. Math. Lett., 8 (1995), 1-6. doi: 10.1016/0893-9659(95)00020-Q. Google Scholar

[24]

Z. Liu and S. Zheng, Exponential stability of the Kirchhoff plate with thermal or viscoelastic damping, Quart. Appl. Math., 55 (1997), 551-564. doi: 10.1090/qam/1466148. Google Scholar

[25]

J. E. Munoz Rivera and R. Racke, Smoothing properties, decay, and global existence of solutions to nonlinear coupled systems of thermoelastic type, SIAM J. Math. Anal., 26 (1995), 1547-1563. doi: 10.1137/S0036142993255058. Google Scholar

[26]

Y. Naito, On the Lp-Lq maximal regularity for the linear thermoelastic plate equation in a bounded domain, Math. Methods Appl. Sci., 32 (2009), 1609-1637. doi: 10.1002/mma.1100. Google Scholar

[27]

Y. Naito and Y. Shibata, On the Lp analytic semigroup associated with the linear thermoelastic plate equations in the half-space, J. Math. Soc. Japan, 61 (2009), 971-1011. doi: 10.2969/jmsj/06140971. Google Scholar

[28]

Y. Shibata, On the exponential decay of the energy of a linear thermoelastic plate, Mat. Apl. Comput., 13 (1994), 81-102. Google Scholar

[29]

Y. Shibata, On the $\mathcal{R}$-boundedness of solution oeprators for the Stokes equations with free boundary condition, Differential Integral Equations, 27 (2014), 313-368. Google Scholar

[30]

Y. Shibata and S. Shimizu, On the Lp-Lq maximal regularity of the Neumann problem for the Stokes equations in a bounded domain, J. Reine Angew. Math., 615 (2008), 157-209. doi: 10.1515/CRELLE.2008.013. Google Scholar

[31]

Y. Shibata and S. Shimizu, On the maxial Lp-Lq regularity of the Stokes problem with first order boundary condition; Model problems, J. Math. Soc. Japan, 64 (2012), 561-626. doi: 10.2969/jmsj/06420561. Google Scholar

[32]

L. Weis, Operator-valued Fourier multiplier theorems and maximal Lp-regularity, Math. Ann., 319 (2001), 735-758. doi: 10.1007/PL00004457. Google Scholar

show all references

References:
[1]

J. Bourgain, Vector-valued singular integrals and the H1-BMO duality, Probability Theory and Harmonic Analysis, Monogr. Textbooks Pure Appl. Math., Dekker, New York, 98 (1986), 1–19. Google Scholar

[2]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer Monographs in Mathematics, Springer, New York, 2010, Well-posedness and long-time dynamics. doi: 10.1007/978-0-387-87712-9. Google Scholar

[3]

R. Denk, M. Hieber and J. Prüss, $\mathcal{R}$-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166 (2003), viii+114 pp. doi: 10.1090/memo/0788. Google Scholar

[4]

R. Denk and R. Racke, Lp-resolvent estimates and time decay for generalized thermoelastic plate equations, Electron. J. Differential Equations (electronic), 48 (2006), 16pp. Google Scholar

[5]

R. DenkR. Racke and Y. Shibata, Lp theory for the linear thermoelastic plate equations in bounded and exterior domains, Adv. Differential Equations, 14 (2009), 685-715. Google Scholar

[6]

R. DenkR. Racke and Y. Shibata, Local energy decay estimate of soluions to the thermoelastic plate equations in two- and three-dimensional exterior domains, Z. Anal. Anwend., 29 (2010), 21-62. doi: 10.4171/ZAA/1396. Google Scholar

[7]

R. Denk and R. Schnaubelt, A structurally damped plate equations with Dirichlet-Neumann boundary conditions, J. Differential Equations, 259 (2015), 1323-1353. doi: 10.1016/j.jde.2015.02.043. Google Scholar

[8]

R. Denk and Y. Shibata, Maximal regularity for the thermoelastic plate equations with free boundary conditions, J. Evolution Equations, 17 (2017), 215-261. doi: 10.1007/s00028-016-0367-x. Google Scholar

[9]

R. Denk and Y. Shibata, Generation of semigroups for the thermoelastic plate equation with free boundary conditions, preprint.Google Scholar

[10]

Y. Enomoto and Y. Shibata, On the $\mathcal{R}$-sectoriality and the initial boundary value problem for the viscous compressible fluid flow, Funkcial. Ekvac., 56 (2013), 441-505. doi: 10.1619/fesi.56.441. Google Scholar

[11]

Su ma'inna, The existence of $ {\mathcal R}$-bounded solution operators of the thermoelastic plate equation with Dirichlet boundary conditions, Math. Methods Appl. Sci., 41 (2018), 1578-1599. doi: 10.1002/mma.4687. Google Scholar

[12]

J. U. Kim, On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889-899. doi: 10.1137/0523047. Google Scholar

[13]

P. C. Kunstmann and L. Weis, Maximal Lp-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty$-functional calculus, Functional Analytic Methods for Evolution Equations, Lecture Notes in Math., Springer, Berlin, 1855 (2004), 65–311. doi: 10.1007/978-3-540-44653-8_2. Google Scholar

[14]

J. E. Lagnese, Boundary Stabilization of Thin Plates, 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989. doi: 10.1137/1.9781611970821. Google Scholar

[15]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations, Volume 1, Abstract Parabolic Systems: Continuous and Approximation, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Chapter 3, 2000.Google Scholar

[16]

I. Lasiecka and R. Triggiani, Analyticity, and lack thereof, of thermo-elastic semigroups, In Control and Partial Differential Equations (Marseille-Luminy, 1997), ESAIM Proc., 4, Soc. Math. Appl. Indust., Paris, 4 (1998), 199–222. doi: 10.1051/proc:1998029. Google Scholar

[17]

I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with free boundary conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 27 (1998), 457–482. Google Scholar

[18]

I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with coupled hinged/Neumann B.C., Abstr. Appl. Anal., 3 (1998), 153-169. doi: 10.1155/S1085337598000487. Google Scholar

[19]

I. Lasiecka and M. Wilke, Maximal regularity and global existence of soluiotns to a quasilinear thermoelastic plate system, Discrete Contin. Dyn. Syst., 33 (2013), 5189-5202. doi: 10.3934/dcds.2013.33.5189. Google Scholar

[20]

I. LasieckaS. Maad and A. Sasane, Existence and exponential decay of solutions to a quasilinear thermoelastic plate system, Nonlinear Differential Equations and Applications NoDEA, 16 (2008), 689-715. doi: 10.1007/s00030-008-0011-8. Google Scholar

[21]

K. Liu and Z. Liu, Exponential stability and analyticity of abstract linear thermoelastic systems, Z. Angew. Math. Phys., 48 (1997), 885-904. doi: 10.1007/s000330050071. Google Scholar

[22]

Z. Liu and J. Yong, Qualitative properties of certain C0 semigroups arising in elastic systems with varioius dampings, Adv. Differential Equations, 3 (1998), 643-686. Google Scholar

[23]

Z.-Y. Liu and M. Renardy, A note on the equations of a thermoelastic plate, Appl. Math. Lett., 8 (1995), 1-6. doi: 10.1016/0893-9659(95)00020-Q. Google Scholar

[24]

Z. Liu and S. Zheng, Exponential stability of the Kirchhoff plate with thermal or viscoelastic damping, Quart. Appl. Math., 55 (1997), 551-564. doi: 10.1090/qam/1466148. Google Scholar

[25]

J. E. Munoz Rivera and R. Racke, Smoothing properties, decay, and global existence of solutions to nonlinear coupled systems of thermoelastic type, SIAM J. Math. Anal., 26 (1995), 1547-1563. doi: 10.1137/S0036142993255058. Google Scholar

[26]

Y. Naito, On the Lp-Lq maximal regularity for the linear thermoelastic plate equation in a bounded domain, Math. Methods Appl. Sci., 32 (2009), 1609-1637. doi: 10.1002/mma.1100. Google Scholar

[27]

Y. Naito and Y. Shibata, On the Lp analytic semigroup associated with the linear thermoelastic plate equations in the half-space, J. Math. Soc. Japan, 61 (2009), 971-1011. doi: 10.2969/jmsj/06140971. Google Scholar

[28]

Y. Shibata, On the exponential decay of the energy of a linear thermoelastic plate, Mat. Apl. Comput., 13 (1994), 81-102. Google Scholar

[29]

Y. Shibata, On the $\mathcal{R}$-boundedness of solution oeprators for the Stokes equations with free boundary condition, Differential Integral Equations, 27 (2014), 313-368. Google Scholar

[30]

Y. Shibata and S. Shimizu, On the Lp-Lq maximal regularity of the Neumann problem for the Stokes equations in a bounded domain, J. Reine Angew. Math., 615 (2008), 157-209. doi: 10.1515/CRELLE.2008.013. Google Scholar

[31]

Y. Shibata and S. Shimizu, On the maxial Lp-Lq regularity of the Stokes problem with first order boundary condition; Model problems, J. Math. Soc. Japan, 64 (2012), 561-626. doi: 10.2969/jmsj/06420561. Google Scholar

[32]

L. Weis, Operator-valued Fourier multiplier theorems and maximal Lp-regularity, Math. Ann., 319 (2001), 735-758. doi: 10.1007/PL00004457. Google Scholar

[1]

Ildoo Kim. An $L_p$-Lipschitz theory for parabolic equations with time measurable pseudo-differential operators. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2751-2771. doi: 10.3934/cpaa.2018130

[2]

Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129

[3]

Guangfeng Dong, Changjian Liu, Jiazhong Yang. On the maximal saddle order of $ p:-q $ resonant saddle. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5729-5742. doi: 10.3934/dcds.2019251

[4]

Monica Motta, Caterina Sartori. On ${\mathcal L}^1$ limit solutions in impulsive control. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1201-1218. doi: 10.3934/dcdss.2018068

[5]

Claudianor O. Alves, Vincenzo Ambrosio, Teresa Isernia. Existence, multiplicity and concentration for a class of fractional $ p \& q $ Laplacian problems in $ \mathbb{R} ^{N} $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2009-2045. doi: 10.3934/cpaa.2019091

[6]

Shixiong Wang, Longjiang Qu, Chao Li, Huaxiong Wang. Further improvement of factoring $ N = p^r q^s$ with partial known bits. Advances in Mathematics of Communications, 2019, 13 (1) : 121-135. doi: 10.3934/amc.2019007

[7]

Pak Tung Ho. Prescribing the $ Q' $-curvature in three dimension. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2285-2294. doi: 10.3934/dcds.2019096

[8]

Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124

[9]

Woocheol Choi, Yong-Cheol Kim. $L^p$ mapping properties for nonlocal Schrödinger operators with certain potentials. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5811-5834. doi: 10.3934/dcds.2018253

[10]

Xinghong Pan, Jiang Xu. Global existence and optimal decay estimates of the compressible viscoelastic flows in $ L^p $ critical spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2021-2057. doi: 10.3934/dcds.2019085

[11]

Annalisa Cesaroni, Serena Dipierro, Matteo Novaga, Enrico Valdinoci. Minimizers of the $ p $-oscillation functional. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-15. doi: 10.3934/dcds.2019231

[12]

Daniel Heinlein, Michael Kiermaier, Sascha Kurz, Alfred Wassermann. A subspace code of size $ \bf{333} $ in the setting of a binary $ \bf{q} $-analog of the Fano plane. Advances in Mathematics of Communications, 2019, 13 (3) : 457-475. doi: 10.3934/amc.2019029

[13]

Yongkuan Cheng, Yaotian Shen. Generalized quasilinear Schrödinger equations with concave functions $ l(s^2) $. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1311-1343. doi: 10.3934/dcds.2019056

[14]

Yeping Li, Jie Liao. Stability and $ L^{p}$ convergence rates of planar diffusion waves for three-dimensional bipolar Euler-Poisson systems. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1281-1302. doi: 10.3934/cpaa.2019062

[15]

Teresa Alberico, Costantino Capozzoli, Luigi D'Onofrio, Roberta Schiattarella. $G$-convergence for non-divergence elliptic operators with VMO coefficients in $\mathbb R^3$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 129-137. doi: 10.3934/dcdss.2019009

[16]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-19. doi: 10.3934/dcds.2019228

[17]

Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062

[18]

Peter Benner, Ryan Lowe, Matthias Voigt. $\mathcal{L}_{∞}$-norm computation for large-scale descriptor systems using structured iterative eigensolvers. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 119-133. doi: 10.3934/naco.2018007

[19]

Tuan Anh Dao, Michael Reissig. $ L^1 $ estimates for oscillating integrals and their applications to semi-linear models with $ \sigma $-evolution like structural damping. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5431-5463. doi: 10.3934/dcds.2019222

[20]

Vladimir Chepyzhov, Alexei Ilyin, Sergey Zelik. Strong trajectory and global $\mathbf{W^{1,p}}$-attractors for the damped-driven Euler system in $\mathbb R^2$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1835-1855. doi: 10.3934/dcdsb.2017109

2018 Impact Factor: 1.048

Article outline

[Back to Top]