September  2019, 8(3): 473-488. doi: 10.3934/eect.2019023

Optimal control of solutions of a multipoint initial-final problem for non-autonomous evolutionary Sobolev type equation

South Ural State University, Institute of Natural Sciences and Mathematics, 454080, Chelyabinsk, Lenin av, 76, Russian Federation

* Corresponding author: sagadeevama@susu.ru

Received  January 2018 Revised  November 2018 Published  May 2019

Fund Project: The work was supported by Act 211 Government of the Russian Federation, contract 02.A03.21.0011

The paper presents sufficient conditions for existence of an optimal control of solutions to a non-autonomous degenerate operator-differential evolution equation. We construct families of operators that solve this equation, as well as classical and strong solutions of the multipoint initial-final problem for the equation. We show that there exists a solution of an optimal control problem for a given operator-differential equation with a multipoint initial-final condition. The paper, in addition to the introduction and the bibliography, contains five sections. The first three parts contain information about the solvability of the multipoint initial-final problem for a non-autonomous equation. The fourth section presents the main result of the article; that is, a theorem on existence of optimal control of solutions to a multipoint initial-final problem. In the fifth part, the optimal control problem for the non-autonomous modified Chen – Gurtin model with the multipoint initial-final condition is investigated on the basis of the obtained abstract results.

Citation: Minzilia A. Sagadeeva, Sophiya A. Zagrebina, Natalia A. Manakova. Optimal control of solutions of a multipoint initial-final problem for non-autonomous evolutionary Sobolev type equation. Evolution Equations & Control Theory, 2019, 8 (3) : 473-488. doi: 10.3934/eect.2019023
References:
[1]

A. B. Alshin, M. O. Korpusov and A. G. Sveshnikov, Blow Up in Nonlinear Sobolev Type Equations, Walter de Gruyter, 2011. doi: 10.1515/9783110255294. Google Scholar

[2]

I. S. Aranson and L. Kramer, The world of the complex Ginzburg – Landau equation, Reviews of Modern Physics, 74 (2002), 99-143. doi: 10.1103/RevModPhys.74.99. Google Scholar

[3]

L. Arlotti and J. Banasiak, Nonautonomous fragmentation equation via evolution semigroups, Mathematical Methods in the Applied Sciences, 33 (2010), 1201-1210. doi: 10.1002/mma.1282. Google Scholar

[4]

J. Banasiak, Mathematical properties of inelastic scattering models in linear kinetic theory, Mathematical Models & Methods in Applied Sciences, 10 (2000), 163-186. doi: 10.1142/S0218202500000112. Google Scholar

[5]

G. I. BarenblattIu. P. Zheltov and I. N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [Strata], Journal of Applied Mathematics and Mechanics, 24 (1960), 1286-1303. doi: 10.1016/0021-8928(60)90107-6. Google Scholar

[6]

P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Journal of Applied Mathematics and Physics (ZAMP), 19 (1968), 614-627. doi: 10.1007/BF01594969. Google Scholar

[7]

G. V. Demidenko and S. V. Upsenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, New York, Basel, 2003. doi: 10.1201/9780203911433. Google Scholar

[8]

A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker Inc, New York, Basel, Hong Kong, 1999. Google Scholar

[9]

A. FaviniG. A. Sviridyuk and A. A. Zamyshlyaeva, One class of Sobolev type equations of higher order with additive "white noise", Communications on Pure and Applied Analysis, 15 (2016), 185-196. doi: 10.3934/cpaa.2016.15.185. Google Scholar

[10]

A. FaviniG. A. Sviridyuk and M. A. Sagadeeva, Linear Sobolev type equations with relatively p-radial operators in space of "noises", Mediterranian Journal of Mathematics, 13 (2016), 4607-4621. doi: 10.1007/s00009-016-0765-x. Google Scholar

[11]

V. E. Fedorov, Degenerate strongly continuous semigroups of operators, St. Peterburg Math. J., 12 (2001), 471-489. Google Scholar

[12]

M. Hallaire, Soil water movement in the film and vapor phase under the influence of evapotranspiration. Water and its conduction insoils, Proceedings of XXXVII Annual Meeting of the Highway Research Board, Highway Research Board Special Report, 40 (1958), 88-105. Google Scholar

[13]

E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, American Mathematical Society, Providence, R.I., 1974. Google Scholar

[14]

A. V. Keller and S. A. Zagrebina, Some generalizations of the Showalter – Sidorov problem for Sobolev-type models, Bulletin of the South Ural State University, Series: Mathematical Modelling, Programming and Computer Software, 8, issue 2 (2015), 5–23. (Russian)Google Scholar

[15]

S. G. Krein, Linear Differential Equations in Banach Space, American Mathematical Society, Providence, R.I., 1971. Google Scholar

[16]

S. G. Krein and S. Ja. L'vin, A general initial problem for a differential equation in a Banach space, Dokl. Akad. Nauk SSSR, 211 (1973), 530–533. (Russian) Google Scholar

[17]

J.-L. Lions, Contrôle Optimal de Systémes Gouvernés par des Équations aux Dérivées Partielles, Dunod, Paris, 1968. (French) Google Scholar

[18]

N. A. Manakova, Mathematical models and optimal control of the filtration and deformation processes, Bulletin of the South Ural State University, Series: Mathematical Modelling, Programming and Computer Software, 8, issue 3 (2015), 5–24. (Russian)Google Scholar

[19]

N. A. Manakova and A. G. Dylkov, Optimal control of the solutions of the initial-finish problem for the linear Hoff model, Mathematical Notes, 94 (2013), 220-230. doi: 10.1134/S0001434613070225. Google Scholar

[20]

N. A. Manakova and G. A. Sviridyuk, An optimal control of the solutions of the initial-final problem for linear Sobolev type equations with strongly relatively p-radial operator, in Semigroups of Operators – Theory and Applications, Springer Proc. Math. Stat. (eds. J. Banasiak, A. Bobrowski and M. Lachowicz), 113, Springer, Cham (2015), 213–224. doi: 10.1007/978-3-319-12145-1_13. Google Scholar

[21]

A. P. Oskolkov, Nonlocal problems for some class nonlinear operator equations arising in the theory Sobolev type equations, Journal of Soviet Mathematics, 64 (1993), 724-736. doi: 10.1007/BF02988478. Google Scholar

[22]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1. Google Scholar

[23]

M. A. Sagadeeva and G. A. Sviridyuk, The nonautonomous linear Oskolkov model on a geometrical graph: The stability of solutions and the optimal control problem, in Semigroups of Operators – Theory and Applications, Springer Proc. Math. Stat. (eds. J. Banasiak, A. Bobrowski and M. Lachowicz), 113, Springer, Cham, (2015), 257–271. doi: 10.1007/978-3-319-12145-1_16. Google Scholar

[24]

M. A. Sagadeeva, Degenerate flows of solving operators for nonstationary Sobolev type equations, Bulletin of the South Ural State University, Series: Mathematics. Mechanics. Physics, 9, issue 1 (2017), 22–30. (Russian)Google Scholar

[25]

R. E. Showalter, The Sobolev type equations. Ⅰ, Applicable Analysis, 5 (1975), 15-22. doi: 10.1080/00036817508839103. Google Scholar

[26]

R. E. Showalter, The Sobolev type equations. Ⅱ, Applicable Analysis, 5 (1975), 81-99. doi: 10.1080/00036817508839111. Google Scholar

[27]

T. G. Sukacheva and A. O. Kondyukov, On a class of Sobolev-type equations, Bulletin of the South Ural State University, Series: Mathematical Modelling, Programming and Computer Software, 7, issue 4 (2014), 5–21. doi: 10.14529/mmp140401. Google Scholar

[28]

G. A. Sviridyuk and A. S. Shipilov, On the stability of solutions of the Oskolkov equations on a graph, Differential Equations, 46 (2010), 1157-1163. doi: 10.1134/S0012266110080094. Google Scholar

[29]

G. A. Sviridyuk and V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht – Boston, 2003. doi: 10.1515/9783110915501. Google Scholar

[30]

G. A. Sviridyuk, Sobolev-type linear equations and strongly continuous semigroups of resolving operators with kernels, Russian Acad. Sci. Dokl. Math., 50 (1995), 137-142. Google Scholar

[31]

G. A. Sviridyuk, A problem of Showalter, Differential Equations, 25 (1989), 338-339. Google Scholar

[32]

G. A. Sviridyuk and A. A. Efremov, Optimal control of Sobolev-type linear equations with relatively p-sectorial operators, Differential Equations, 31 (1995), 1882-1890. Google Scholar

[33]

S. A. Zagrebina, A multipoint initial-final value problem for a linear model of plane-parallel thermal convection in viscoelastic incompressible fluid, Bulletin of the South Ural State University, Series: Mathematical Modelling, Programming and Computer Software, 7, issue 3 (2014), 5–22. doi: 10.14529/mmp140301. Google Scholar

[34]

S. A. Zagrebina and M. A. Sagadeeva, The generalized splitting theorem for linear Sobolev type equations in relatively radial case, The Bulletin of Irkutsk State University, Series: Mathematics, 7 (2014), 19-33. Google Scholar

[35]

A. A. Zamyshlyaeva, The higher-order Sobolev-type models, Bulletin of the South Ural State University, Series: Mathematical Modelling, Programming and Computer Software, 7, issue 2 (2014), 5–28. (Russian)Google Scholar

[36]

A. A. Zamyshlyaeva, O. N. Tsyplenkova and E. V. Bychkov, Optimal control of solutions to the initial-final problem for the Sobolev type equation of higher order, Journal of Computational and Engineering Mathematics, 3, issue 2 (2016), 57–67. doi: 10.14529/jcem1602007. Google Scholar

show all references

References:
[1]

A. B. Alshin, M. O. Korpusov and A. G. Sveshnikov, Blow Up in Nonlinear Sobolev Type Equations, Walter de Gruyter, 2011. doi: 10.1515/9783110255294. Google Scholar

[2]

I. S. Aranson and L. Kramer, The world of the complex Ginzburg – Landau equation, Reviews of Modern Physics, 74 (2002), 99-143. doi: 10.1103/RevModPhys.74.99. Google Scholar

[3]

L. Arlotti and J. Banasiak, Nonautonomous fragmentation equation via evolution semigroups, Mathematical Methods in the Applied Sciences, 33 (2010), 1201-1210. doi: 10.1002/mma.1282. Google Scholar

[4]

J. Banasiak, Mathematical properties of inelastic scattering models in linear kinetic theory, Mathematical Models & Methods in Applied Sciences, 10 (2000), 163-186. doi: 10.1142/S0218202500000112. Google Scholar

[5]

G. I. BarenblattIu. P. Zheltov and I. N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [Strata], Journal of Applied Mathematics and Mechanics, 24 (1960), 1286-1303. doi: 10.1016/0021-8928(60)90107-6. Google Scholar

[6]

P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Journal of Applied Mathematics and Physics (ZAMP), 19 (1968), 614-627. doi: 10.1007/BF01594969. Google Scholar

[7]

G. V. Demidenko and S. V. Upsenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, New York, Basel, 2003. doi: 10.1201/9780203911433. Google Scholar

[8]

A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker Inc, New York, Basel, Hong Kong, 1999. Google Scholar

[9]

A. FaviniG. A. Sviridyuk and A. A. Zamyshlyaeva, One class of Sobolev type equations of higher order with additive "white noise", Communications on Pure and Applied Analysis, 15 (2016), 185-196. doi: 10.3934/cpaa.2016.15.185. Google Scholar

[10]

A. FaviniG. A. Sviridyuk and M. A. Sagadeeva, Linear Sobolev type equations with relatively p-radial operators in space of "noises", Mediterranian Journal of Mathematics, 13 (2016), 4607-4621. doi: 10.1007/s00009-016-0765-x. Google Scholar

[11]

V. E. Fedorov, Degenerate strongly continuous semigroups of operators, St. Peterburg Math. J., 12 (2001), 471-489. Google Scholar

[12]

M. Hallaire, Soil water movement in the film and vapor phase under the influence of evapotranspiration. Water and its conduction insoils, Proceedings of XXXVII Annual Meeting of the Highway Research Board, Highway Research Board Special Report, 40 (1958), 88-105. Google Scholar

[13]

E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, American Mathematical Society, Providence, R.I., 1974. Google Scholar

[14]

A. V. Keller and S. A. Zagrebina, Some generalizations of the Showalter – Sidorov problem for Sobolev-type models, Bulletin of the South Ural State University, Series: Mathematical Modelling, Programming and Computer Software, 8, issue 2 (2015), 5–23. (Russian)Google Scholar

[15]

S. G. Krein, Linear Differential Equations in Banach Space, American Mathematical Society, Providence, R.I., 1971. Google Scholar

[16]

S. G. Krein and S. Ja. L'vin, A general initial problem for a differential equation in a Banach space, Dokl. Akad. Nauk SSSR, 211 (1973), 530–533. (Russian) Google Scholar

[17]

J.-L. Lions, Contrôle Optimal de Systémes Gouvernés par des Équations aux Dérivées Partielles, Dunod, Paris, 1968. (French) Google Scholar

[18]

N. A. Manakova, Mathematical models and optimal control of the filtration and deformation processes, Bulletin of the South Ural State University, Series: Mathematical Modelling, Programming and Computer Software, 8, issue 3 (2015), 5–24. (Russian)Google Scholar

[19]

N. A. Manakova and A. G. Dylkov, Optimal control of the solutions of the initial-finish problem for the linear Hoff model, Mathematical Notes, 94 (2013), 220-230. doi: 10.1134/S0001434613070225. Google Scholar

[20]

N. A. Manakova and G. A. Sviridyuk, An optimal control of the solutions of the initial-final problem for linear Sobolev type equations with strongly relatively p-radial operator, in Semigroups of Operators – Theory and Applications, Springer Proc. Math. Stat. (eds. J. Banasiak, A. Bobrowski and M. Lachowicz), 113, Springer, Cham (2015), 213–224. doi: 10.1007/978-3-319-12145-1_13. Google Scholar

[21]

A. P. Oskolkov, Nonlocal problems for some class nonlinear operator equations arising in the theory Sobolev type equations, Journal of Soviet Mathematics, 64 (1993), 724-736. doi: 10.1007/BF02988478. Google Scholar

[22]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1. Google Scholar

[23]

M. A. Sagadeeva and G. A. Sviridyuk, The nonautonomous linear Oskolkov model on a geometrical graph: The stability of solutions and the optimal control problem, in Semigroups of Operators – Theory and Applications, Springer Proc. Math. Stat. (eds. J. Banasiak, A. Bobrowski and M. Lachowicz), 113, Springer, Cham, (2015), 257–271. doi: 10.1007/978-3-319-12145-1_16. Google Scholar

[24]

M. A. Sagadeeva, Degenerate flows of solving operators for nonstationary Sobolev type equations, Bulletin of the South Ural State University, Series: Mathematics. Mechanics. Physics, 9, issue 1 (2017), 22–30. (Russian)Google Scholar

[25]

R. E. Showalter, The Sobolev type equations. Ⅰ, Applicable Analysis, 5 (1975), 15-22. doi: 10.1080/00036817508839103. Google Scholar

[26]

R. E. Showalter, The Sobolev type equations. Ⅱ, Applicable Analysis, 5 (1975), 81-99. doi: 10.1080/00036817508839111. Google Scholar

[27]

T. G. Sukacheva and A. O. Kondyukov, On a class of Sobolev-type equations, Bulletin of the South Ural State University, Series: Mathematical Modelling, Programming and Computer Software, 7, issue 4 (2014), 5–21. doi: 10.14529/mmp140401. Google Scholar

[28]

G. A. Sviridyuk and A. S. Shipilov, On the stability of solutions of the Oskolkov equations on a graph, Differential Equations, 46 (2010), 1157-1163. doi: 10.1134/S0012266110080094. Google Scholar

[29]

G. A. Sviridyuk and V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht – Boston, 2003. doi: 10.1515/9783110915501. Google Scholar

[30]

G. A. Sviridyuk, Sobolev-type linear equations and strongly continuous semigroups of resolving operators with kernels, Russian Acad. Sci. Dokl. Math., 50 (1995), 137-142. Google Scholar

[31]

G. A. Sviridyuk, A problem of Showalter, Differential Equations, 25 (1989), 338-339. Google Scholar

[32]

G. A. Sviridyuk and A. A. Efremov, Optimal control of Sobolev-type linear equations with relatively p-sectorial operators, Differential Equations, 31 (1995), 1882-1890. Google Scholar

[33]

S. A. Zagrebina, A multipoint initial-final value problem for a linear model of plane-parallel thermal convection in viscoelastic incompressible fluid, Bulletin of the South Ural State University, Series: Mathematical Modelling, Programming and Computer Software, 7, issue 3 (2014), 5–22. doi: 10.14529/mmp140301. Google Scholar

[34]

S. A. Zagrebina and M. A. Sagadeeva, The generalized splitting theorem for linear Sobolev type equations in relatively radial case, The Bulletin of Irkutsk State University, Series: Mathematics, 7 (2014), 19-33. Google Scholar

[35]

A. A. Zamyshlyaeva, The higher-order Sobolev-type models, Bulletin of the South Ural State University, Series: Mathematical Modelling, Programming and Computer Software, 7, issue 2 (2014), 5–28. (Russian)Google Scholar

[36]

A. A. Zamyshlyaeva, O. N. Tsyplenkova and E. V. Bychkov, Optimal control of solutions to the initial-final problem for the Sobolev type equation of higher order, Journal of Computational and Engineering Mathematics, 3, issue 2 (2016), 57–67. doi: 10.14529/jcem1602007. Google Scholar

[1]

Teresa Alberico, Costantino Capozzoli, Luigi D'Onofrio, Roberta Schiattarella. $G$-convergence for non-divergence elliptic operators with VMO coefficients in $\mathbb R^3$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 129-137. doi: 10.3934/dcdss.2019009

[2]

Eun-Kyung Cho, Cunsheng Ding, Jong Yoon Hyun. A spectral characterisation of $ t $-designs and its applications. Advances in Mathematics of Communications, 2019, 13 (3) : 477-503. doi: 10.3934/amc.2019030

[3]

Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129

[4]

Annalisa Cesaroni, Serena Dipierro, Matteo Novaga, Enrico Valdinoci. Minimizers of the $ p $-oscillation functional. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-15. doi: 10.3934/dcds.2019231

[5]

Sugata Gangopadhyay, Goutam Paul, Nishant Sinha, Pantelimon Stǎnicǎ. Generalized nonlinearity of $ S$-boxes. Advances in Mathematics of Communications, 2018, 12 (1) : 115-122. doi: 10.3934/amc.2018007

[6]

Vladimir Chepyzhov, Alexei Ilyin, Sergey Zelik. Strong trajectory and global $\mathbf{W^{1,p}}$-attractors for the damped-driven Euler system in $\mathbb R^2$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1835-1855. doi: 10.3934/dcdsb.2017109

[7]

Ildoo Kim. An $L_p$-Lipschitz theory for parabolic equations with time measurable pseudo-differential operators. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2751-2771. doi: 10.3934/cpaa.2018130

[8]

Shixiong Wang, Longjiang Qu, Chao Li, Huaxiong Wang. Further improvement of factoring $ N = p^r q^s$ with partial known bits. Advances in Mathematics of Communications, 2019, 13 (1) : 121-135. doi: 10.3934/amc.2019007

[9]

Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062

[10]

Peng Mei, Zhan Zhou, Genghong Lin. Periodic and subharmonic solutions for a 2$n$th-order $\phi_c$-Laplacian difference equation containing both advances and retardations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2085-2095. doi: 10.3934/dcdss.2019134

[11]

Woocheol Choi, Yong-Cheol Kim. $L^p$ mapping properties for nonlocal Schrödinger operators with certain potentials. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5811-5834. doi: 10.3934/dcds.2018253

[12]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[13]

Diego Maldonado. On interior $C^2$-estimates for the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058

[14]

Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $-Laplacian type. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070

[15]

Harbir Antil, Mahamadi Warma. Optimal control of the coefficient for the regional fractional $p$-Laplace equation: Approximation and convergence. Mathematical Control & Related Fields, 2019, 9 (1) : 1-38. doi: 10.3934/mcrf.2019001

[16]

Phuong Le. Symmetry of singular solutions for a weighted Choquard equation involving the fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, 2020, 19 (1) : 527-539. doi: 10.3934/cpaa.2020026

[17]

Chengxiang Wang, Li Zeng, Wei Yu, Liwei Xu. Existence and convergence analysis of $\ell_{0}$ and $\ell_{2}$ regularizations for limited-angle CT reconstruction. Inverse Problems & Imaging, 2018, 12 (3) : 545-572. doi: 10.3934/ipi.2018024

[18]

Yonglin Cao, Yuan Cao, Hai Q. Dinh, Fang-Wei Fu, Jian Gao, Songsak Sriboonchitta. Constacyclic codes of length $np^s$ over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$. Advances in Mathematics of Communications, 2018, 12 (2) : 231-262. doi: 10.3934/amc.2018016

[19]

Jun Wang, Xing Tao Wang. Sparse signal reconstruction via the approximations of $ \ell_{0} $ quasinorm. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2019035

[20]

Claudianor O. Alves, Vincenzo Ambrosio, Teresa Isernia. Existence, multiplicity and concentration for a class of fractional $ p \& q $ Laplacian problems in $ \mathbb{R} ^{N} $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2009-2045. doi: 10.3934/cpaa.2019091

2018 Impact Factor: 1.048

Article outline

[Back to Top]