June  2019, 8(2): 447-471. doi: 10.3934/eect.2019022

Scattering theory for semilinear Schrödinger equations with an inverse-square potential via energy methods

Department of Mathematics, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama city, Kanagawa, JAPAN

Received  February 2018 Revised  September 2018 Published  March 2019

We solve the scattering problems for nonlinear Schrödinger equations with an inverse-square potential by applying the energy methods. The methods are optimized to the abstract semilinear Schrödinger evolution equations with nonautonomous terms.

Citation: Toshiyuki Suzuki. Scattering theory for semilinear Schrödinger equations with an inverse-square potential via energy methods. Evolution Equations & Control Theory, 2019, 8 (2) : 447-471. doi: 10.3934/eect.2019022
References:
[1]

L. BaudouinO. Kavian and J.-P. Puel, Regularity for a Schrödinger equation with singular potentials and application to bilinear optimal control, J. Differential Equations, 216 (2005), 188-222. doi: 10.1016/j.jde.2005.04.006. Google Scholar

[2]

N. BurqF. PlanchonJ. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential, J. Funct. Anal., 203 (2003), 519-549. doi: 10.1016/S0022-1236(03)00238-6. Google Scholar

[3]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, 2003. doi: 10.1090/cln/010. Google Scholar

[4]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, 13. The Clarendon Press, Oxford University Press, New York, 1998. Google Scholar

[5]

T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75-100. doi: 10.1007/BF02099529. Google Scholar

[6]

J. Ginibre and T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension $n \ge 2$, Comm. Math. Phys., 151 (1993), 619-645. doi: 10.1007/BF02097031. Google Scholar

[7]

J. Ginibre and G. Velo, Long range scattering and modified wave operators for some Hartree type equations. Ⅰ, Rev. Math. Phys., 12 (2000), 361-429. doi: 10.1142/S0129055X00000137. Google Scholar

[8]

J. Ginibre and G. Velo, Long range scattering and modified wave operators for some Hartree type equations. Ⅱ, Ann. Henri Poincaré, 1 (2000), 753-800. doi: 10.1007/PL00001014. Google Scholar

[9]

N. Hayashi and T. Ozawa, Scattering theory in the weighted $L^{2}(\mathbb{R}^{n})$ spaces for some Schrödinger equations, Ann. Inst. Henri Poincaré, 48 (1988), 17-37. Google Scholar

[10]

N. Hayashi and Y. Tsutsumi, Scattering theory for Hartree type equations, Ann. Inst. Henri Poincaré, 46 (1987), 187-213. Google Scholar

[11]

J. LuC. Miao and J. Murphy, Scattering in $H^{1}$ for the intercritical NLS with an inverse-square potential, J. Differ. Equ., 264 (2018), 3174-3211. doi: 10.1016/j.jde.2017.11.015. Google Scholar

[12]

H. Mizutani, Remarks on endpoint Strichartz estimates for Schrödinger equations with the critical inverse-square potential, J. Differential Equations, 263 (2017), 3832-3853. doi: 10.1016/j.jde.2017.05.006. Google Scholar

[13]

K. Nakanishi, Modified wave operators for the Hartree equation with data, image and convergence in the same space. Ⅱ, Ann. Henri Poincaré, 3 (2002), 503-535. doi: 10.1007/s00023-002-8626-5. Google Scholar

[14]

K. Nakanishi, Modified wave operators for the Hartree equation with data, image and convergence in the same space, Commun. Pure Appl. Anal., 1 (2002), 237-252. doi: 10.3934/cpaa.2002.1.237. Google Scholar

[15]

N. OkazawaT. Suzuki and T. Yokota, Cauchy problem for nonlinear Schrödinger equations with inverse-square potentials, Appl. Anal., 91 (2012), 1605-1629. doi: 10.1080/00036811.2011.631914. Google Scholar

[16]

N. OkazawaT. Suzuki and T. Yokota, Energy methods for abstract nonlinear Schrödinger equations, Evol. Equ. Control Theory, 1 (2012), 337-354. doi: 10.3934/eect.2012.1.337. Google Scholar

[17]

N. OkazawaT. Yokota and K. Yoshii, Remarks on linear Schrödinger evolution equations with Coulomb potential with moving center, SUT J. Math., 46 (2010), 155-176. Google Scholar

[18]

N. Okazawa and K. Yoshii, Linear Schrödinger evolution equations with moving Coulomb singularities, J. Differential Equations, 254 (2013), 2964-2999. doi: 10.1016/j.jde.2013.01.017. Google Scholar

[19]

V. Pierfelice, Weighted Strichartz estimates for the Schrödinger and wave equations on Damek-Ricci spaces, Math. Z., 260 (2008), 377-392. Google Scholar

[20]

T. Suzuki, Energy methods for Hartree type equation with inverse-square potentials, Evol. Equ. Control Theory, 2 (2013), 531-542. doi: 10.3934/eect.2013.2.531. Google Scholar

[21]

T. Suzuki, Blowup of nonlinear Schrödinger equations with inverse-square potentials, Differ. Equ. Appl., 6 (2014), 309-333. doi: 10.7153/dea-06-17. Google Scholar

[22]

T. Suzuki, Solvability of nonlinear Schrödinger equations with some critical singular potential via generalized Hardy-Rellich inequalities, Funkcial. Ekvac., 59 (2016), 1-34. doi: 10.1619/fesi.59.1. Google Scholar

[23]

T. Suzuki, Scattering theory for Hartree equations with inverse-square potentials, Appl. Anal., 96 (2017), 2032-2043. doi: 10.1080/00036811.2016.1200720. Google Scholar

[24]

T. Suzuki, Virial identities for nonlinear Schrödinger equations with an inverse-square potential of critical coefficient, Differ. Equ. Appl., 9 (2017), 327-352. doi: 10.7153/dea-2017-09-24. Google Scholar

[25]

K. Yajima, Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys., 110 (1987), 415-426. doi: 10.1007/BF01212420. Google Scholar

[26]

J. Zhang and J. Zheng, Scattering theory for nonlinear Schrödinger equations with inverse-square potential, J. Funct. Anal., 267 (2014), 2907-2932. doi: 10.1016/j.jfa.2014.08.012. Google Scholar

show all references

References:
[1]

L. BaudouinO. Kavian and J.-P. Puel, Regularity for a Schrödinger equation with singular potentials and application to bilinear optimal control, J. Differential Equations, 216 (2005), 188-222. doi: 10.1016/j.jde.2005.04.006. Google Scholar

[2]

N. BurqF. PlanchonJ. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential, J. Funct. Anal., 203 (2003), 519-549. doi: 10.1016/S0022-1236(03)00238-6. Google Scholar

[3]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, 2003. doi: 10.1090/cln/010. Google Scholar

[4]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, 13. The Clarendon Press, Oxford University Press, New York, 1998. Google Scholar

[5]

T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75-100. doi: 10.1007/BF02099529. Google Scholar

[6]

J. Ginibre and T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension $n \ge 2$, Comm. Math. Phys., 151 (1993), 619-645. doi: 10.1007/BF02097031. Google Scholar

[7]

J. Ginibre and G. Velo, Long range scattering and modified wave operators for some Hartree type equations. Ⅰ, Rev. Math. Phys., 12 (2000), 361-429. doi: 10.1142/S0129055X00000137. Google Scholar

[8]

J. Ginibre and G. Velo, Long range scattering and modified wave operators for some Hartree type equations. Ⅱ, Ann. Henri Poincaré, 1 (2000), 753-800. doi: 10.1007/PL00001014. Google Scholar

[9]

N. Hayashi and T. Ozawa, Scattering theory in the weighted $L^{2}(\mathbb{R}^{n})$ spaces for some Schrödinger equations, Ann. Inst. Henri Poincaré, 48 (1988), 17-37. Google Scholar

[10]

N. Hayashi and Y. Tsutsumi, Scattering theory for Hartree type equations, Ann. Inst. Henri Poincaré, 46 (1987), 187-213. Google Scholar

[11]

J. LuC. Miao and J. Murphy, Scattering in $H^{1}$ for the intercritical NLS with an inverse-square potential, J. Differ. Equ., 264 (2018), 3174-3211. doi: 10.1016/j.jde.2017.11.015. Google Scholar

[12]

H. Mizutani, Remarks on endpoint Strichartz estimates for Schrödinger equations with the critical inverse-square potential, J. Differential Equations, 263 (2017), 3832-3853. doi: 10.1016/j.jde.2017.05.006. Google Scholar

[13]

K. Nakanishi, Modified wave operators for the Hartree equation with data, image and convergence in the same space. Ⅱ, Ann. Henri Poincaré, 3 (2002), 503-535. doi: 10.1007/s00023-002-8626-5. Google Scholar

[14]

K. Nakanishi, Modified wave operators for the Hartree equation with data, image and convergence in the same space, Commun. Pure Appl. Anal., 1 (2002), 237-252. doi: 10.3934/cpaa.2002.1.237. Google Scholar

[15]

N. OkazawaT. Suzuki and T. Yokota, Cauchy problem for nonlinear Schrödinger equations with inverse-square potentials, Appl. Anal., 91 (2012), 1605-1629. doi: 10.1080/00036811.2011.631914. Google Scholar

[16]

N. OkazawaT. Suzuki and T. Yokota, Energy methods for abstract nonlinear Schrödinger equations, Evol. Equ. Control Theory, 1 (2012), 337-354. doi: 10.3934/eect.2012.1.337. Google Scholar

[17]

N. OkazawaT. Yokota and K. Yoshii, Remarks on linear Schrödinger evolution equations with Coulomb potential with moving center, SUT J. Math., 46 (2010), 155-176. Google Scholar

[18]

N. Okazawa and K. Yoshii, Linear Schrödinger evolution equations with moving Coulomb singularities, J. Differential Equations, 254 (2013), 2964-2999. doi: 10.1016/j.jde.2013.01.017. Google Scholar

[19]

V. Pierfelice, Weighted Strichartz estimates for the Schrödinger and wave equations on Damek-Ricci spaces, Math. Z., 260 (2008), 377-392. Google Scholar

[20]

T. Suzuki, Energy methods for Hartree type equation with inverse-square potentials, Evol. Equ. Control Theory, 2 (2013), 531-542. doi: 10.3934/eect.2013.2.531. Google Scholar

[21]

T. Suzuki, Blowup of nonlinear Schrödinger equations with inverse-square potentials, Differ. Equ. Appl., 6 (2014), 309-333. doi: 10.7153/dea-06-17. Google Scholar

[22]

T. Suzuki, Solvability of nonlinear Schrödinger equations with some critical singular potential via generalized Hardy-Rellich inequalities, Funkcial. Ekvac., 59 (2016), 1-34. doi: 10.1619/fesi.59.1. Google Scholar

[23]

T. Suzuki, Scattering theory for Hartree equations with inverse-square potentials, Appl. Anal., 96 (2017), 2032-2043. doi: 10.1080/00036811.2016.1200720. Google Scholar

[24]

T. Suzuki, Virial identities for nonlinear Schrödinger equations with an inverse-square potential of critical coefficient, Differ. Equ. Appl., 9 (2017), 327-352. doi: 10.7153/dea-2017-09-24. Google Scholar

[25]

K. Yajima, Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys., 110 (1987), 415-426. doi: 10.1007/BF01212420. Google Scholar

[26]

J. Zhang and J. Zheng, Scattering theory for nonlinear Schrödinger equations with inverse-square potential, J. Funct. Anal., 267 (2014), 2907-2932. doi: 10.1016/j.jfa.2014.08.012. Google Scholar

[1]

Toshiyuki Suzuki. Energy methods for Hartree type equations with inverse-square potentials. Evolution Equations & Control Theory, 2013, 2 (3) : 531-542. doi: 10.3934/eect.2013.2.531

[2]

Toshiyuki Suzuki. Nonlinear Schrödinger equations with inverse-square potentials in two dimensional space. Conference Publications, 2015, 2015 (special) : 1019-1024. doi: 10.3934/proc.2015.1019

[3]

Veronica Felli, Ana Primo. Classification of local asymptotics for solutions to heat equations with inverse-square potentials. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 65-107. doi: 10.3934/dcds.2011.31.65

[4]

Gisèle Ruiz Goldstein, Jerome A. Goldstein, Abdelaziz Rhandi. Kolmogorov equations perturbed by an inverse-square potential. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 623-630. doi: 10.3934/dcdss.2011.4.623

[5]

Suna Ma, Huiyuan Li, Zhimin Zhang. Novel spectral methods for Schrödinger equations with an inverse square potential on the whole space. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1589-1615. doi: 10.3934/dcdsb.2018221

[6]

Zhongwei Tang. Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials. Communications on Pure & Applied Analysis, 2014, 13 (1) : 237-248. doi: 10.3934/cpaa.2014.13.237

[7]

Noboru Okazawa, Toshiyuki Suzuki, Tomomi Yokota. Energy methods for abstract nonlinear Schrödinger equations. Evolution Equations & Control Theory, 2012, 1 (2) : 337-354. doi: 10.3934/eect.2012.1.337

[8]

Xing Cheng, Ze Li, Lifeng Zhao. Scattering of solutions to the nonlinear Schrödinger equations with regular potentials. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 2999-3023. doi: 10.3934/dcds.2017129

[9]

Rowan Killip, Changxing Miao, Monica Visan, Junyong Zhang, Jiqiang Zheng. The energy-critical NLS with inverse-square potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3831-3866. doi: 10.3934/dcds.2017162

[10]

Tiziana Durante, Abdelaziz Rhandi. On the essential self-adjointness of Ornstein-Uhlenbeck operators perturbed by inverse-square potentials. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 649-655. doi: 10.3934/dcdss.2013.6.649

[11]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

[12]

Hisashi Morioka. Inverse boundary value problems for discrete Schrödinger operators on the multi-dimensional square lattice. Inverse Problems & Imaging, 2011, 5 (3) : 715-730. doi: 10.3934/ipi.2011.5.715

[13]

Ricardo Weder, Dimitri Yafaev. Inverse scattering at a fixed energy for long-range potentials. Inverse Problems & Imaging, 2007, 1 (1) : 217-224. doi: 10.3934/ipi.2007.1.217

[14]

Lei Wei, Xiyou Cheng, Zhaosheng Feng. Exact behavior of positive solutions to elliptic equations with multi-singular inverse square potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7169-7189. doi: 10.3934/dcds.2016112

[15]

Veronica Felli, Elsa M. Marchini, Susanna Terracini. On the behavior of solutions to Schrödinger equations with dipole type potentials near the singularity. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 91-119. doi: 10.3934/dcds.2008.21.91

[16]

Rémi Carles, Christof Sparber. Semiclassical wave packet dynamics in Schrödinger equations with periodic potentials. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 759-774. doi: 10.3934/dcdsb.2012.17.759

[17]

Yongsheng Jiang, Huan-Song Zhou. A sharp decay estimate for nonlinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1723-1730. doi: 10.3934/cpaa.2010.9.1723

[18]

Rémi Carles. Global existence results for nonlinear Schrödinger equations with quadratic potentials. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 385-398. doi: 10.3934/dcds.2005.13.385

[19]

Zaihui Gan, Boling Guo, Jian Zhang. Blowup and global existence of the nonlinear Schrödinger equations with multiple potentials. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1303-1312. doi: 10.3934/cpaa.2009.8.1303

[20]

Gisèle Ruiz Goldstein, Jerome A. Goldstein, Fabiana Travessini De Cezaro. Equipartition of energy for nonautonomous wave equations. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 75-85. doi: 10.3934/dcdss.2017004

2018 Impact Factor: 1.048

Article outline

[Back to Top]