# American Institute of Mathematical Sciences

March  2019, 8(1): 31-42. doi: 10.3934/eect.2019002

## Some remarks on the model of rigid heat conductor with memory: Unbounded heat relaxation function

 1 Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Università di Roma La Sapienza, Via A. Scarpa 16, I-00161, Italy 2 I.N.F.N. - Sez. Roma1, Gr.Ⅳ: Mathematical Methods in NonLinear Physics, Rome, Italy

Received  March 2018 Revised  July 2018 Published  January 2019

Fund Project: The author is supported by G.N.F.M.-I.N.d.A.M., I.N.F.N. and La Sapienza Università di Roma, Italy

The model of rigid linear heat conductor with memory is reconsidered focussing the interest on the heat relaxation function. Thus, the definitions of heat flux and thermal work are revised to understand where changes are required when the heat flux relaxation function $k$ is assumed to be unbounded at the initial time $t = 0$. That is, it is represented by a regular integrable function, namely $k\in L^1( \mathbb{R}^+)$, but its time derivative is not integrable, that is $\dot k\notin L^1( \mathbb{R}^+)$. The study takes its origin in [2]: the heat conductor model described therein is modified in such a way to adapt it to the case of a heat flux relaxation function $k$ which is unbounded at $t = 0$. Notably, also when these relaxed assumptions on $k$ are introduced, whenever two different thermal states which correspond to the same heat flux are considered, then both states correspond also to the same thermal work. Accordingly, the notion of equivalence can be introduced, together with its physical relevance, both in the regular kernel case in [2] as well as in the singular kernel case analysed in the present investigation.

Citation: Sandra Carillo. Some remarks on the model of rigid heat conductor with memory: Unbounded heat relaxation function. Evolution Equations & Control Theory, 2019, 8 (1) : 31-42. doi: 10.3934/eect.2019002
##### References:
 [1] M. J. Ablowitz and A.S. Fokas, Complex Variables, Cambridge University Press, Cambridge, 1997. Google Scholar [2] G. Amendola and S. Carillo, Thermal work and minimum free energy in a heat conductor with memory, Quart. J. of Mech. and Appl. Math., 57 (2004), 429-446. doi: 10.1093/qjmam/57.3.429. Google Scholar [3] L. Boltzmann, Zur theorie der elastichen nachwirkung, Annalen der physik und chemie, 77 (1876), 624-654. Google Scholar [4] S. Carillo, Regular and singular kernel problems in magneto-viscoelasticity, Meccanica S.I. "New trends in Dynamics and Stability", 52 (2017), 3053-3060. doi: 10.1007/s11012-017-0722-1. Google Scholar [5] S. Carillo, Existence, uniqueness and exponential decay: An evolution problem in heat conduction with memory, Quart. Appl. Math., 69 (2011), 635-649. doi: 10.1090/S0033-569X-2011-01223-1. Google Scholar [6] S. Carillo, An evolution problem in materials with fading memory: Solution's existence and uniqueness, Complex Var. Elliptic Equ., 56 (2011), 481-492. doi: 10.1080/17476931003786667. Google Scholar [7] S. Carillo, Materials with memory: Free energies & solution exponential decay, Commun. Pure Appl. Anal., 9 (2010), 1235-1248. doi: 10.3934/cpaa.2010.9.1235. Google Scholar [8] S. Carillo, A 3-Dimensional Singular Kernel Problem in Viscoelasticity: An Existence Result, Atti Accademia Peloritana dei Pericolanti, Classe di Scienze Fisiche, Matematiche e Naturali, ISSN 1825-1242 96, No. S2, A1 (2018), arXiv:1808.02411. doi: 10.1478/AAPP.96S2A1. Google Scholar [9] S. Carillo and C. Giorgi, Non-classical Memory Kernels in Linear Viscoelasticity, Chapter 13 in "Viscoelastic and Viscoplastic Materials", M.F. El-Amin Editor, ISBN 978-953-51-2603-4, Print ISBN 978-953-51-2602-7, Published: September 6, 2016, InTech. doi: 10.5772/64251. Google Scholar [10] S. Carillo, Singular kernel problems in materials with memory, Meccanica, 50 (2015), 603-615. doi: 10.1007/s11012-014-0083-y. Google Scholar [11] S. Carillo, M. Chipot, V. Valente and G. Vergara Caffarelli, A magneto-viscoelasticity problem with a singular memory kernel, Nonlinear Analysis Series B: Real World Applications, 35 (2017), 200-210. doi: 10.1016/j.nonrwa.2016.10.014. Google Scholar [12] S. Carillo, M. Chipot, V. Valente and G. Vergara Caffarelli, On weak regularity requirements of the relaxation modulus in viscoelasticity, arXiv: 1811.06723, (2018).Google Scholar [13] S. Carillo, V. Valente and G. Vergara Caffarelli, A result of existence and uniqueness for an integro-differential system in magneto-viscoelasticity, Applicable Analisys: An International Journal, 1563-504X, 90 (2011), 1791-1802. doi: 10.1080/00036811003735832. Google Scholar [14] S. Carillo, V. Valente and G. Vergara Caffarelli, An existence theorem for the magnetic-viscoelastic problem, Discrete and Continuous Dynamical Systems Series S., 5 (2012), 435-447. doi: 10.3934/dcdss.2012.5.435. Google Scholar [15] S. Carillo, V. Valente and G. Vergara Caffarelli, Heat conduction with memory: A singular kernel problem, Evolution Equations and Control Theory, 3 (2014), 399-410. doi: 10.3934/eect.2014.3.399. Google Scholar [16] S. Carillo, V. Valente and G. Vergara Caffarelli, A linear viscoelasticity problem with a singular memory kernel: An existence and uniqueness result, Differential and Integral Equations, 26 (2013), 1115-1125. Google Scholar [17] S. Carillo, Some remarks on materials with memory: Heat conduction and viscoelasticity, Journal of Nonlinear Mathematical Physics, 12 (2005), 163-178. doi: 10.2991/jnmp.2005.12.s1.14. Google Scholar [18] S. Carillo, Some remarks on materials with memory: Heat conduction and viscoelasticity, Journal of Nonlinear Mathematical Physics, 3 (2015), i-iii. doi: 10.1080/14029251.2014.971573. Google Scholar [19] C. Cattaneo, Sulla conduzione del calore, Atti Sem. Mat. Fis. Universitá Modena, 3 (1949), 83-101. Google Scholar [20] J. Ciambella, A. Paolone and S. Vidoli, Memory decay rates of viscoelastic solids: Not too slow, but not too fast either, Rheol. Acta, 50 (2011), 661-674. doi: 10.1007/s00397-011-0549-y. Google Scholar [21] B. D. Coleman, Thermodynamics of materials with memory, Arch. Rat. Mech. Anal., 17 (1964), 1-46. doi: 10.1007/BF00283864. Google Scholar [22] B. D. Coleman and E. H. Dill, On thermodynamics and stability of materials with memory, Arch. Rat. Mech. Anal., 51 (1973), 1-53. doi: 10.1007/BF00275991. Google Scholar [23] C. M. Dafermos, An abstract Volterra equation with applications to linear viscoelasticity, J. Diff. Equations, 7 (1970), 554-569. doi: 10.1016/0022-0396(70)90101-4. Google Scholar [24] C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rat. Mech. Anal., 37 (1970), 297-308. doi: 10.1007/BF00251609. Google Scholar [25] B. de Andrade and A. Viana, On a fractional reaction diffusion equation, Z. Angew. Math. Phys., 68 (2017), Art. 59, 11 pp. doi: 10.1007/s00033-017-0801-0. Google Scholar [26] L. Deseri, M. Zingales and P. Pollaci, The state of fractional hereditary materials (FHM), Discrete and Continuous Dynamical Systems - B, 19 (2014), 2065-2089. doi: 10.3934/dcdsb.2014.19.2065. Google Scholar [27] M. Fabrizio, G. Gentili and D. W. Reynolds, On rigid heat conductors with memory, Int. J. Eng. Sci., 36 (1998), 765-782. doi: 10.1016/S0020-7225(97)00123-7. Google Scholar [28] M. Fabrizio, Fractional rheological models for thermomechanical systems. Dissipation and free energies, Fract. Calc. Appl. Anal., 17 (2014), 206-223. doi: 10.2478/s13540-014-0163-7. Google Scholar [29] C. Giorgi and G. Gentili, Thermodynamic properties and stability for the heat flux equation with linear memory, Quart. Appl. Math., 51 (1993), 343-362. doi: 10.1090/qam/1218373. Google Scholar [30] M. Grasselli and A. Lorenzi, Abstract nonlinear Volterra integro-differential equations with nonsmooth kernels, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei, (9) Mat. Appl., 2 (1991), 43-53. Google Scholar [31] M. E. Gurtin, Modern continuum thermodynamics, Mechanics Today, 1 (1974), 168-213. doi: 10.1016/B978-0-08-017246-0.50009-5. Google Scholar [32] M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds, Arch. Rat. Mech. Anal., 31 (1968), 113-126. doi: 10.1007/BF00281373. Google Scholar [33] J. Janno and L. von Wolfersdorf, Identification of weakly singular memory kernels in viscoelasticity, ZAMM Z. Angew. Math. Mech., 78 (1998), 391-403. doi: 10.1002/(SICI)1521-4001(199806)78:6<391::AID-ZAMM391>3.0.CO;2-J. Google Scholar [34] J. Janno and L. von Wolfersdorf, Identification of weakly singular memory kernels in heat conduction, Z. Angew. Math. Mech., 77 (1997), 243-257. doi: 10.1002/zamm.19970770403. Google Scholar [35] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. An Introduction to Mathematical Models, Imperial College, Press, London, 2010. doi: 10.1142/9781848163300. [36] M. McCarthy, Constitutive equations for thermomechanical materials with memory, Int. J. Eng. Sci., 8 (1970), 467-474. doi: 10.1016/0020-7225(70)90023-6. Google Scholar [37] R. K. Miller and A. Feldstein, Smoothness of solutions of Volterra integral equations with weakly singular kernels, SIAM J. Math. Anal., 2 (1971), 242-258. doi: 10.1137/0502022. Google Scholar

show all references

##### References:
 [1] M. J. Ablowitz and A.S. Fokas, Complex Variables, Cambridge University Press, Cambridge, 1997. Google Scholar [2] G. Amendola and S. Carillo, Thermal work and minimum free energy in a heat conductor with memory, Quart. J. of Mech. and Appl. Math., 57 (2004), 429-446. doi: 10.1093/qjmam/57.3.429. Google Scholar [3] L. Boltzmann, Zur theorie der elastichen nachwirkung, Annalen der physik und chemie, 77 (1876), 624-654. Google Scholar [4] S. Carillo, Regular and singular kernel problems in magneto-viscoelasticity, Meccanica S.I. "New trends in Dynamics and Stability", 52 (2017), 3053-3060. doi: 10.1007/s11012-017-0722-1. Google Scholar [5] S. Carillo, Existence, uniqueness and exponential decay: An evolution problem in heat conduction with memory, Quart. Appl. Math., 69 (2011), 635-649. doi: 10.1090/S0033-569X-2011-01223-1. Google Scholar [6] S. Carillo, An evolution problem in materials with fading memory: Solution's existence and uniqueness, Complex Var. Elliptic Equ., 56 (2011), 481-492. doi: 10.1080/17476931003786667. Google Scholar [7] S. Carillo, Materials with memory: Free energies & solution exponential decay, Commun. Pure Appl. Anal., 9 (2010), 1235-1248. doi: 10.3934/cpaa.2010.9.1235. Google Scholar [8] S. Carillo, A 3-Dimensional Singular Kernel Problem in Viscoelasticity: An Existence Result, Atti Accademia Peloritana dei Pericolanti, Classe di Scienze Fisiche, Matematiche e Naturali, ISSN 1825-1242 96, No. S2, A1 (2018), arXiv:1808.02411. doi: 10.1478/AAPP.96S2A1. Google Scholar [9] S. Carillo and C. Giorgi, Non-classical Memory Kernels in Linear Viscoelasticity, Chapter 13 in "Viscoelastic and Viscoplastic Materials", M.F. El-Amin Editor, ISBN 978-953-51-2603-4, Print ISBN 978-953-51-2602-7, Published: September 6, 2016, InTech. doi: 10.5772/64251. Google Scholar [10] S. Carillo, Singular kernel problems in materials with memory, Meccanica, 50 (2015), 603-615. doi: 10.1007/s11012-014-0083-y. Google Scholar [11] S. Carillo, M. Chipot, V. Valente and G. Vergara Caffarelli, A magneto-viscoelasticity problem with a singular memory kernel, Nonlinear Analysis Series B: Real World Applications, 35 (2017), 200-210. doi: 10.1016/j.nonrwa.2016.10.014. Google Scholar [12] S. Carillo, M. Chipot, V. Valente and G. Vergara Caffarelli, On weak regularity requirements of the relaxation modulus in viscoelasticity, arXiv: 1811.06723, (2018).Google Scholar [13] S. Carillo, V. Valente and G. Vergara Caffarelli, A result of existence and uniqueness for an integro-differential system in magneto-viscoelasticity, Applicable Analisys: An International Journal, 1563-504X, 90 (2011), 1791-1802. doi: 10.1080/00036811003735832. Google Scholar [14] S. Carillo, V. Valente and G. Vergara Caffarelli, An existence theorem for the magnetic-viscoelastic problem, Discrete and Continuous Dynamical Systems Series S., 5 (2012), 435-447. doi: 10.3934/dcdss.2012.5.435. Google Scholar [15] S. Carillo, V. Valente and G. Vergara Caffarelli, Heat conduction with memory: A singular kernel problem, Evolution Equations and Control Theory, 3 (2014), 399-410. doi: 10.3934/eect.2014.3.399. Google Scholar [16] S. Carillo, V. Valente and G. Vergara Caffarelli, A linear viscoelasticity problem with a singular memory kernel: An existence and uniqueness result, Differential and Integral Equations, 26 (2013), 1115-1125. Google Scholar [17] S. Carillo, Some remarks on materials with memory: Heat conduction and viscoelasticity, Journal of Nonlinear Mathematical Physics, 12 (2005), 163-178. doi: 10.2991/jnmp.2005.12.s1.14. Google Scholar [18] S. Carillo, Some remarks on materials with memory: Heat conduction and viscoelasticity, Journal of Nonlinear Mathematical Physics, 3 (2015), i-iii. doi: 10.1080/14029251.2014.971573. Google Scholar [19] C. Cattaneo, Sulla conduzione del calore, Atti Sem. Mat. Fis. Universitá Modena, 3 (1949), 83-101. Google Scholar [20] J. Ciambella, A. Paolone and S. Vidoli, Memory decay rates of viscoelastic solids: Not too slow, but not too fast either, Rheol. Acta, 50 (2011), 661-674. doi: 10.1007/s00397-011-0549-y. Google Scholar [21] B. D. Coleman, Thermodynamics of materials with memory, Arch. Rat. Mech. Anal., 17 (1964), 1-46. doi: 10.1007/BF00283864. Google Scholar [22] B. D. Coleman and E. H. Dill, On thermodynamics and stability of materials with memory, Arch. Rat. Mech. Anal., 51 (1973), 1-53. doi: 10.1007/BF00275991. Google Scholar [23] C. M. Dafermos, An abstract Volterra equation with applications to linear viscoelasticity, J. Diff. Equations, 7 (1970), 554-569. doi: 10.1016/0022-0396(70)90101-4. Google Scholar [24] C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rat. Mech. Anal., 37 (1970), 297-308. doi: 10.1007/BF00251609. Google Scholar [25] B. de Andrade and A. Viana, On a fractional reaction diffusion equation, Z. Angew. Math. Phys., 68 (2017), Art. 59, 11 pp. doi: 10.1007/s00033-017-0801-0. Google Scholar [26] L. Deseri, M. Zingales and P. Pollaci, The state of fractional hereditary materials (FHM), Discrete and Continuous Dynamical Systems - B, 19 (2014), 2065-2089. doi: 10.3934/dcdsb.2014.19.2065. Google Scholar [27] M. Fabrizio, G. Gentili and D. W. Reynolds, On rigid heat conductors with memory, Int. J. Eng. Sci., 36 (1998), 765-782. doi: 10.1016/S0020-7225(97)00123-7. Google Scholar [28] M. Fabrizio, Fractional rheological models for thermomechanical systems. Dissipation and free energies, Fract. Calc. Appl. Anal., 17 (2014), 206-223. doi: 10.2478/s13540-014-0163-7. Google Scholar [29] C. Giorgi and G. Gentili, Thermodynamic properties and stability for the heat flux equation with linear memory, Quart. Appl. Math., 51 (1993), 343-362. doi: 10.1090/qam/1218373. Google Scholar [30] M. Grasselli and A. Lorenzi, Abstract nonlinear Volterra integro-differential equations with nonsmooth kernels, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei, (9) Mat. Appl., 2 (1991), 43-53. Google Scholar [31] M. E. Gurtin, Modern continuum thermodynamics, Mechanics Today, 1 (1974), 168-213. doi: 10.1016/B978-0-08-017246-0.50009-5. Google Scholar [32] M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds, Arch. Rat. Mech. Anal., 31 (1968), 113-126. doi: 10.1007/BF00281373. Google Scholar [33] J. Janno and L. von Wolfersdorf, Identification of weakly singular memory kernels in viscoelasticity, ZAMM Z. Angew. Math. Mech., 78 (1998), 391-403. doi: 10.1002/(SICI)1521-4001(199806)78:6<391::AID-ZAMM391>3.0.CO;2-J. Google Scholar [34] J. Janno and L. von Wolfersdorf, Identification of weakly singular memory kernels in heat conduction, Z. Angew. Math. Mech., 77 (1997), 243-257. doi: 10.1002/zamm.19970770403. Google Scholar [35] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. An Introduction to Mathematical Models, Imperial College, Press, London, 2010. doi: 10.1142/9781848163300. [36] M. McCarthy, Constitutive equations for thermomechanical materials with memory, Int. J. Eng. Sci., 8 (1970), 467-474. doi: 10.1016/0020-7225(70)90023-6. Google Scholar [37] R. K. Miller and A. Feldstein, Smoothness of solutions of Volterra integral equations with weakly singular kernels, SIAM J. Math. Anal., 2 (1971), 242-258. doi: 10.1137/0502022. Google Scholar
 [1] Sandra Carillo, Vanda Valente, Giorgio Vergara Caffarelli. Heat conduction with memory: A singular kernel problem. Evolution Equations & Control Theory, 2014, 3 (3) : 399-410. doi: 10.3934/eect.2014.3.399 [2] Tomás Caraballo, José Real, I. D. Chueshov. Pullback attractors for stochastic heat equations in materials with memory. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 525-539. doi: 10.3934/dcdsb.2008.9.525 [3] Corrado Mascia. Stability analysis for linear heat conduction with memory kernels described by Gamma functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3569-3584. doi: 10.3934/dcds.2015.35.3569 [4] Tomás Caraballo, I. D. Chueshov, Pedro Marín-Rubio, José Real. Existence and asymptotic behaviour for stochastic heat equations with multiplicative noise in materials with memory. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 253-270. doi: 10.3934/dcds.2007.18.253 [5] Michela Eleuteri, Luca Lussardi. Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evolution Equations & Control Theory, 2014, 3 (3) : 411-427. doi: 10.3934/eect.2014.3.411 [6] Sergei A. Avdonin, Sergei A. Ivanov, Jun-Min Wang. Inverse problems for the heat equation with memory. Inverse Problems & Imaging, 2019, 13 (1) : 31-38. doi: 10.3934/ipi.2019002 [7] Yueling Li, Yingchao Xie, Xicheng Zhang. Large deviation principle for stochastic heat equation with memory. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5221-5237. doi: 10.3934/dcds.2015.35.5221 [8] Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations & Control Theory, 2014, 3 (1) : 35-58. doi: 10.3934/eect.2014.3.35 [9] Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. A rate-independent model for permanent inelastic effects in shape memory materials. Networks & Heterogeneous Media, 2011, 6 (1) : 145-165. doi: 10.3934/nhm.2011.6.145 [10] Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147 [11] Shuji Yoshikawa, Irena Pawłow, Wojciech M. Zajączkowski. A quasilinear thermoviscoelastic system for shape memory alloys with temperature dependent specific heat. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1093-1115. doi: 10.3934/cpaa.2009.8.1093 [12] Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden. Minimum free energy in the frequency domain for a heat conductor with memory. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 793-816. doi: 10.3934/dcdsb.2010.14.793 [13] Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden, Adele Manes. Energy stability for thermo-viscous fluids with a fading memory heat flux. Evolution Equations & Control Theory, 2015, 4 (3) : 265-279. doi: 10.3934/eect.2015.4.265 [14] Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 745-759. doi: 10.3934/dcdss.2011.4.745 [15] John Murrough Golden. Constructing free energies for materials with memory. Evolution Equations & Control Theory, 2014, 3 (3) : 447-483. doi: 10.3934/eect.2014.3.447 [16] Andrei Halanay, Luciano Pandolfi. Lack of controllability of thermal systems with memory. Evolution Equations & Control Theory, 2014, 3 (3) : 485-497. doi: 10.3934/eect.2014.3.485 [17] Zhiqiang Yang, Junzhi Cui, Qiang Ma. The second-order two-scale computation for integrated heat transfer problem with conduction, convection and radiation in periodic porous materials. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 827-848. doi: 10.3934/dcdsb.2014.19.827 [18] Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control & Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014 [19] Sandra Carillo. Materials with memory: Free energies & solution exponential decay. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1235-1248. doi: 10.3934/cpaa.2010.9.1235 [20] Markus Riedle, Jianliang Zhai. Large deviations for stochastic heat equations with memory driven by Lévy-type noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1983-2005. doi: 10.3934/dcds.2018080

2018 Impact Factor: 1.048

## Metrics

• PDF downloads (59)
• HTML views (392)
• Cited by (0)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]