December  2016, 5(4): 605-629. doi: 10.3934/eect.2016021

On interaction of circular cylindrical shells with a Poiseuille type flow

1. 

Kharkov National Universit, Department of Mathematics and Mechanics, 4 Svobody sq, 61077 Kharkov

2. 

Department of Mathematics and Mechanics, Kharkov Karazin National University, 4, Svobody sq., Kharkov 61077

Received  July 2016 Revised  September 2016 Published  October 2016

We study dynamics of a coupled system consisting of the 3D Navier--Stokes equations which is linearized near a certain Poiseuille type flow between two unbounded circular cylinders and nonlinear elasticity equations for the transversal displacements of the bounding cylindrical shells. We show that this problem generates an evolution semigroup $S_t$ possessing a compact finite-dimensional global attractor.
Citation: Igor Chueshov, Tamara Fastovska. On interaction of circular cylindrical shells with a Poiseuille type flow. Evolution Equations & Control Theory, 2016, 5 (4) : 605-629. doi: 10.3934/eect.2016021
References:
[1]

M. S. Agranovich, Sobolev Spaces, Their Generalizations, and Elliptic Problems in Smooth and Lipschitz Domains,, Springer-Verlag, (2015). doi: 10.1007/978-3-319-14648-5. Google Scholar

[2]

G. Avalos, The strong stability and instability of a fluid-structure semigroup,, Appl. Math. Optim., 55 (2007), 163. doi: 10.1007/s00245-006-0884-z. Google Scholar

[3]

G. Avalos and F. Bucci, Exponential decay properties of a mathematical model for a certain fluid-structure interaction,, New prospects in direct, 10 (2014), 49. doi: 10.1007/978-3-319-11406-4_3. Google Scholar

[4]

G. Avalos and R. Triggiani, Semigroup well-posedness in the energy space of a parabolic- hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction,, Discr. Contin. Dyn. Sys. Ser.S, 2 (2009), 417. doi: 10.3934/dcdss.2009.2.417. Google Scholar

[5]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, North-Holland, (1992). Google Scholar

[6]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model,, in Fluids and Waves, (2007), 55. doi: 10.1090/conm/440/08476. Google Scholar

[7]

A. Chambolle, B. Desjardins, M. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate., J. Math. Fluid Mech., 7 (2005), 368. doi: 10.1007/s00021-004-0121-y. Google Scholar

[8]

I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems,, Springer-Verlag, (2015). doi: 10.1007/978-3-319-22903-4. Google Scholar

[9]

I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems,, Acta, (2002). Google Scholar

[10]

I. Chueshov, A global attractor for a fluid-plate interaction model accounting only for longitudinal deformations of the plate,, Math. Meth. Appl. Sci., 34 (2011), 1801. doi: 10.1002/mma.1496. Google Scholar

[11]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping,, Mem. Amer. Math. Soc., 195 (2008). doi: 10.1090/memo/0912. Google Scholar

[12]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations,, Springer-Verlag, (2010). doi: 10.1007/978-0-387-87712-9. Google Scholar

[13]

I. Chueshov and I. Ryzhkova, A global attractor for a fluid-plate interaction model,, Comm. Pure Appl. Anal., 12 (2013), 1635. doi: 10.3934/cpaa.2013.12.1635. Google Scholar

[14]

I. Chueshov and I. Ryzhkova, Unsteady interaction of a viscous fluid with an elastic shell modeled by full von Karman equations,, J. Diff. Eqs., 254 (2013), 1833. doi: 10.1016/j.jde.2012.11.006. Google Scholar

[15]

I. Chueshov and I. Ryzhkova, On the interaction of an elastic wall with a Poiseuille-type flow,, Ukrainian Mathematical Journal, 65 (2013), 158. doi: 10.1007/s11253-013-0771-0. Google Scholar

[16]

D. Coutand and S. Shkoller, Motion of an elastic solid inside an incompressible viscous fluid,, Arch. Ration. Mech. Anal., 176 (2005), 25. doi: 10.1007/s00205-004-0340-7. Google Scholar

[17]

E. H. Donnell, A new theory for the buckling of thin cylinders under axial compression and bending,, Trans. ASME, 56 (1934), 795. Google Scholar

[18]

D. A. Evensen, Nonlinear Fexural Vibrations of Thin-Walled Circular Cylinders,, NASA TN D-4090., (1967). Google Scholar

[19]

G. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems,, $2^{nd}$ edition, (2011). doi: 10.1007/978-0-387-09620-9. Google Scholar

[20]

G. Galdi, C. Simader and H. Sohr, A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in $W^{-1/q,q}$,, Math. Annalen, 331 (2005), 41. doi: 10.1007/s00208-004-0573-7. Google Scholar

[21]

N. Große and C. Schneider, Sobolev spaces on Riemannian manifolds with bounded geometry: general coordinates and traces,, Math. Nachr., 286 (2013), 1586. doi: 10.1002/mana.201300007. Google Scholar

[22]

Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem,, Discrete Contin. Dyn. Syst., 9 (2003), 633. doi: 10.3934/dcds.2003.9.633. Google Scholar

[23]

D. Fujiwara, Concrete characterizations of the domains of fractional powers of some elliptic differential operators of the second order,, Proc. Japan Acad., 43 (1967), 82. doi: 10.3792/pja/1195521686. Google Scholar

[24]

C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate,, SIAM J. Math. Anal., 40 (2008), 716. doi: 10.1137/070699196. Google Scholar

[25]

M. Grobbelaar-Van Dalsen, A new approach to the stabilization of a fluid-structure interaction model,, Applicable Analysis 88 (2009), 88 (2009), 1053. doi: 10.1080/00036810903114841. Google Scholar

[26]

M. Grobbelaar-Van Dalsen, Strong stability for a fluid-structure model,, Math. Methods Appl. Sci., 32 (2009), 1452. doi: 10.1002/mma.1104. Google Scholar

[27]

M. Guidorzi, M. Padula and P. I. Plotnikov, Hopf solutions to a fluid-elastic interaction model,, MMAS, 18 (2008), 215. doi: 10.1142/S0218202508002668. Google Scholar

[28]

O. Ladyzhenskaya, Mathematical Theory of Viscous Incompressible Flow,, Gordon and Breach, (1969). Google Scholar

[29]

J.-L. Lions and E. Magenes, Problémes Aux Limites non Homogénes et Applications,, Vol. 1, (1968). Google Scholar

[30]

A. Osses and J. Puel, Approximate controllability for a linear model of fluid structure interaction,, ESAIM: Control, 4 (1999), 497. doi: 10.1051/cocv:1999119. Google Scholar

[31]

M. E. Taylor, Partial Differential Equations 1. Basic theory,, Springer-Verlag, (1996). doi: 10.1007/978-1-4684-9320-7. Google Scholar

[32]

R. Temam, Infinite-Dimensional Dynamical Dystems in Mechanics and Physics,, Springer-Verlag, (1988). doi: 10.1007/978-1-4684-0313-8. Google Scholar

[33]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis,, Reprint of the 1984 edition, (1984). Google Scholar

[34]

H. Triebel, Theory of Function Spaces 2,, Birkhäuser, (1983). doi: 10.1007/978-3-0346-0416-1. Google Scholar

[35]

H. Triebel, Interpolation Theory, Functional Spaces and Differential Operators,, North Holland, (1978). Google Scholar

show all references

References:
[1]

M. S. Agranovich, Sobolev Spaces, Their Generalizations, and Elliptic Problems in Smooth and Lipschitz Domains,, Springer-Verlag, (2015). doi: 10.1007/978-3-319-14648-5. Google Scholar

[2]

G. Avalos, The strong stability and instability of a fluid-structure semigroup,, Appl. Math. Optim., 55 (2007), 163. doi: 10.1007/s00245-006-0884-z. Google Scholar

[3]

G. Avalos and F. Bucci, Exponential decay properties of a mathematical model for a certain fluid-structure interaction,, New prospects in direct, 10 (2014), 49. doi: 10.1007/978-3-319-11406-4_3. Google Scholar

[4]

G. Avalos and R. Triggiani, Semigroup well-posedness in the energy space of a parabolic- hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction,, Discr. Contin. Dyn. Sys. Ser.S, 2 (2009), 417. doi: 10.3934/dcdss.2009.2.417. Google Scholar

[5]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, North-Holland, (1992). Google Scholar

[6]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model,, in Fluids and Waves, (2007), 55. doi: 10.1090/conm/440/08476. Google Scholar

[7]

A. Chambolle, B. Desjardins, M. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate., J. Math. Fluid Mech., 7 (2005), 368. doi: 10.1007/s00021-004-0121-y. Google Scholar

[8]

I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems,, Springer-Verlag, (2015). doi: 10.1007/978-3-319-22903-4. Google Scholar

[9]

I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems,, Acta, (2002). Google Scholar

[10]

I. Chueshov, A global attractor for a fluid-plate interaction model accounting only for longitudinal deformations of the plate,, Math. Meth. Appl. Sci., 34 (2011), 1801. doi: 10.1002/mma.1496. Google Scholar

[11]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping,, Mem. Amer. Math. Soc., 195 (2008). doi: 10.1090/memo/0912. Google Scholar

[12]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations,, Springer-Verlag, (2010). doi: 10.1007/978-0-387-87712-9. Google Scholar

[13]

I. Chueshov and I. Ryzhkova, A global attractor for a fluid-plate interaction model,, Comm. Pure Appl. Anal., 12 (2013), 1635. doi: 10.3934/cpaa.2013.12.1635. Google Scholar

[14]

I. Chueshov and I. Ryzhkova, Unsteady interaction of a viscous fluid with an elastic shell modeled by full von Karman equations,, J. Diff. Eqs., 254 (2013), 1833. doi: 10.1016/j.jde.2012.11.006. Google Scholar

[15]

I. Chueshov and I. Ryzhkova, On the interaction of an elastic wall with a Poiseuille-type flow,, Ukrainian Mathematical Journal, 65 (2013), 158. doi: 10.1007/s11253-013-0771-0. Google Scholar

[16]

D. Coutand and S. Shkoller, Motion of an elastic solid inside an incompressible viscous fluid,, Arch. Ration. Mech. Anal., 176 (2005), 25. doi: 10.1007/s00205-004-0340-7. Google Scholar

[17]

E. H. Donnell, A new theory for the buckling of thin cylinders under axial compression and bending,, Trans. ASME, 56 (1934), 795. Google Scholar

[18]

D. A. Evensen, Nonlinear Fexural Vibrations of Thin-Walled Circular Cylinders,, NASA TN D-4090., (1967). Google Scholar

[19]

G. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems,, $2^{nd}$ edition, (2011). doi: 10.1007/978-0-387-09620-9. Google Scholar

[20]

G. Galdi, C. Simader and H. Sohr, A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in $W^{-1/q,q}$,, Math. Annalen, 331 (2005), 41. doi: 10.1007/s00208-004-0573-7. Google Scholar

[21]

N. Große and C. Schneider, Sobolev spaces on Riemannian manifolds with bounded geometry: general coordinates and traces,, Math. Nachr., 286 (2013), 1586. doi: 10.1002/mana.201300007. Google Scholar

[22]

Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem,, Discrete Contin. Dyn. Syst., 9 (2003), 633. doi: 10.3934/dcds.2003.9.633. Google Scholar

[23]

D. Fujiwara, Concrete characterizations of the domains of fractional powers of some elliptic differential operators of the second order,, Proc. Japan Acad., 43 (1967), 82. doi: 10.3792/pja/1195521686. Google Scholar

[24]

C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate,, SIAM J. Math. Anal., 40 (2008), 716. doi: 10.1137/070699196. Google Scholar

[25]

M. Grobbelaar-Van Dalsen, A new approach to the stabilization of a fluid-structure interaction model,, Applicable Analysis 88 (2009), 88 (2009), 1053. doi: 10.1080/00036810903114841. Google Scholar

[26]

M. Grobbelaar-Van Dalsen, Strong stability for a fluid-structure model,, Math. Methods Appl. Sci., 32 (2009), 1452. doi: 10.1002/mma.1104. Google Scholar

[27]

M. Guidorzi, M. Padula and P. I. Plotnikov, Hopf solutions to a fluid-elastic interaction model,, MMAS, 18 (2008), 215. doi: 10.1142/S0218202508002668. Google Scholar

[28]

O. Ladyzhenskaya, Mathematical Theory of Viscous Incompressible Flow,, Gordon and Breach, (1969). Google Scholar

[29]

J.-L. Lions and E. Magenes, Problémes Aux Limites non Homogénes et Applications,, Vol. 1, (1968). Google Scholar

[30]

A. Osses and J. Puel, Approximate controllability for a linear model of fluid structure interaction,, ESAIM: Control, 4 (1999), 497. doi: 10.1051/cocv:1999119. Google Scholar

[31]

M. E. Taylor, Partial Differential Equations 1. Basic theory,, Springer-Verlag, (1996). doi: 10.1007/978-1-4684-9320-7. Google Scholar

[32]

R. Temam, Infinite-Dimensional Dynamical Dystems in Mechanics and Physics,, Springer-Verlag, (1988). doi: 10.1007/978-1-4684-0313-8. Google Scholar

[33]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis,, Reprint of the 1984 edition, (1984). Google Scholar

[34]

H. Triebel, Theory of Function Spaces 2,, Birkhäuser, (1983). doi: 10.1007/978-3-0346-0416-1. Google Scholar

[35]

H. Triebel, Interpolation Theory, Functional Spaces and Differential Operators,, North Holland, (1978). Google Scholar

[1]

Milan Pokorný, Piotr B. Mucha. 3D steady compressible Navier--Stokes equations. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 151-163. doi: 10.3934/dcdss.2008.1.151

[2]

Luca Bisconti, Davide Catania. Remarks on global attractors for the 3D Navier--Stokes equations with horizontal filtering. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 59-75. doi: 10.3934/dcdsb.2015.20.59

[3]

Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira. Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences & Engineering, 2017, 14 (1) : 179-193. doi: 10.3934/mbe.2017012

[4]

M. Bulíček, F. Ettwein, P. Kaplický, Dalibor Pražák. The dimension of the attractor for the 3D flow of a non-Newtonian fluid. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1503-1520. doi: 10.3934/cpaa.2009.8.1503

[5]

Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2339-2350. doi: 10.3934/dcdsb.2017101

[6]

Tian Ma, Shouhong Wang. Asymptotic structure for solutions of the Navier--Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 189-204. doi: 10.3934/dcds.2004.11.189

[7]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

[8]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[9]

Hui Chen, Daoyuan Fang, Ting Zhang. Regularity of 3D axisymmetric Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1923-1939. doi: 10.3934/dcds.2017081

[10]

Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045

[11]

Vladimir V. Chepyzhov, E. S. Titi, Mark I. Vishik. On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 481-500. doi: 10.3934/dcds.2007.17.481

[12]

Yutaka Tsuzuki. Solvability of generalized nonlinear heat equations with constraints coupled with Navier--Stokes equations in 2D domains. Conference Publications, 2015, 2015 (special) : 1079-1088. doi: 10.3934/proc.2015.1079

[13]

C. Foias, M. S Jolly, O. P. Manley. Recurrence in the 2-$D$ Navier--Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 253-268. doi: 10.3934/dcds.2004.10.253

[14]

T. Tachim Medjo. A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external force and its global attractor. Communications on Pure & Applied Analysis, 2011, 10 (2) : 415-433. doi: 10.3934/cpaa.2011.10.415

[15]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[16]

Daoyuan Fang, Chenyin Qian. Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Communications on Pure & Applied Analysis, 2014, 13 (2) : 585-603. doi: 10.3934/cpaa.2014.13.585

[17]

Gaocheng Yue, Chengkui Zhong. Attractors for autonomous and nonautonomous 3D Navier-Stokes-Voight equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 985-1002. doi: 10.3934/dcdsb.2011.16.985

[18]

Zoran Grujić. Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 837-843. doi: 10.3934/dcds.2006.14.837

[19]

G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified Navier-Stokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2593-2621. doi: 10.3934/cpaa.2018123

[20]

Ning Ju. The global attractor for the solutions to the 3D viscous primitive equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 159-179. doi: 10.3934/dcds.2007.17.159

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]