# American Institute of Mathematical Sciences

• Previous Article
Nonlinear acoustics and shock formation in lossless barotropic Green--Naghdi fluids
• EECT Home
• This Issue
• Next Article
The effects of coupling on finite-amplitude acoustic traveling waves in thermoviscous gases: Blackstock's models
September  2016, 5(3): 367-381. doi: 10.3934/eect.2016009

## Oscillating nonlinear acoustic shock waves

 1 Bogolyubov Institute for Theoretical Physics, 03143 Kiev, Ukraine 2 GreenHydrogen, DK-6000 Kolding, Denmark 3 Department of Physics and Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark 4 Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

Received  January 2016 Revised  March 2016 Published  August 2016

We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resonance a stationary state arise consisting of multiple oscillating shock waves. Off resonance driving leads to a nearly linear oscillating ground state but superimposed by bursts of a fast oscillating shock wave. Based on a travelling wave ansatz for the fluid velocity potential with an added 2'nd order polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined.
Citation: Yuri Gaididei, Anders Rønne Rasmussen, Peter Leth Christiansen, Mads Peter Sørensen. Oscillating nonlinear acoustic shock waves. Evolution Equations & Control Theory, 2016, 5 (3) : 367-381. doi: 10.3934/eect.2016009
##### References:
 [1] B. O. Enflo and C. M. Hedberg, Theory of Nonlinear Acoustics in Fluids, $1^{st}$, edition, (2002). Google Scholar [2] W. Chester, Resonant oscillations in closed tubes,, J. Fluid Mech., 18 (1964), 44. doi: 10.1017/S0022112064000040. Google Scholar [3] I. Christov, C. I. Christov and P. M. Jordan, Modeling weakly nonlinear acoustic wave propagation,, Q. Jl Mech. Appl. Math., 60 (2007), 473. doi: 10.1093/qjmam/hbm017. Google Scholar [4] I. Christov, C. I. Christov and P. M. Jordan, Corrigendum and addendum: Modeling weakly nonlinear acoustic wave propagation,, Q. Jl Mech. Appl. Math., 68 (2015), 231. doi: 10.1093/qjmam/hbu023. Google Scholar [5] S. M. Hagsäter, T. G. Jensen, H. Bruus and J. P. Kutter, Acoustic resonances in piezo-actuated microfluidic chips: Full-image micro-piv experiments and numerical simulations,, Lab Chip, 7 (2007), 1336. Google Scholar [6] S. M. Hagsäter, A. Lenshof, P. Skafte-Pedersen, J. P. Kutter, T. Laurell and H. Bruus, Acoustic resonances in straight micro channels: Beyond the 1d-approximation,, Lab Chip, 8 (2008), 1178. Google Scholar [7] M. F. Hamilton and C. L. Morfey, In: M.F. Hamilton and D.T. Blackstock, (eds.),, Nonlinear Acoustics, (1998), 41. Google Scholar [8] P. M. Jordan, An analytical study of Kuznetsov's equation: Diffusive solitons, shock formation, and solution bifurcation,, Physics Letters A, 326 (2004), 77. doi: 10.1016/j.physleta.2004.03.067. Google Scholar [9] P. M. Jordan, G. V. Norton, S. A. Chin-Bing and A. Warn-Varnas, On the propagation of nonlinear acoustic waves in viscous and thermoviscous fluids,, European Journal of Mechanics B-Fluids, 34 (2012), 56. doi: 10.1016/j.euromechflu.2012.01.016. Google Scholar [10] B. Kaltenbacher, Mathematics of nonlinear acoustics,, Evolutiuon equations and control theory, 4 (2015), 447. doi: 10.3934/eect.2015.4.447. Google Scholar [11] R. S. Keiffer, R. McNorton, P. M. Jordan and I. C. Christov, Dissipative acoustic solitons under a weakly-nonlinear, Lagrangian-averaged Euler-$\alpha$ model of single-phase lossless fluids,, Wave Motion, 48 (2011), 782. doi: 10.1016/j.wavemoti.2011.04.013. Google Scholar [12] V. P. Kuznetsov, Equations of nonlinear acoustics,, Sov. Phys. Acoust., 16 (1971), 467. Google Scholar [13] S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, part I,, Acustica, 82 (1996), 579. Google Scholar [14] NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/,, Release 1.0.10 of 2015-08-07. Online companion to [OLBC10]., (): 2015. Google Scholar [15] W. L. Nyborg, Acoustic streaming,, Physical Acoustics, 2 (1965), 265. doi: 10.1016/B978-0-12-395662-0.50015-1. Google Scholar [16] A. R. Rasmussen, M. P. Sørensen, Yu. B. Gaididei and P. L. Christiansen, Interacting wave fronts and rarefaction waves in a second order model of nonlinear thermoviscous fluids,, Acta Appl. Math., 115 (2011), 43. doi: 10.1007/s10440-010-9581-7. Google Scholar [17] Anders Rønne Rasmussen, Thermoviscous Model Equations in Nonlinear Acoustics,, Ph.D Thesis, (2009). Google Scholar

show all references

##### References:
 [1] B. O. Enflo and C. M. Hedberg, Theory of Nonlinear Acoustics in Fluids, $1^{st}$, edition, (2002). Google Scholar [2] W. Chester, Resonant oscillations in closed tubes,, J. Fluid Mech., 18 (1964), 44. doi: 10.1017/S0022112064000040. Google Scholar [3] I. Christov, C. I. Christov and P. M. Jordan, Modeling weakly nonlinear acoustic wave propagation,, Q. Jl Mech. Appl. Math., 60 (2007), 473. doi: 10.1093/qjmam/hbm017. Google Scholar [4] I. Christov, C. I. Christov and P. M. Jordan, Corrigendum and addendum: Modeling weakly nonlinear acoustic wave propagation,, Q. Jl Mech. Appl. Math., 68 (2015), 231. doi: 10.1093/qjmam/hbu023. Google Scholar [5] S. M. Hagsäter, T. G. Jensen, H. Bruus and J. P. Kutter, Acoustic resonances in piezo-actuated microfluidic chips: Full-image micro-piv experiments and numerical simulations,, Lab Chip, 7 (2007), 1336. Google Scholar [6] S. M. Hagsäter, A. Lenshof, P. Skafte-Pedersen, J. P. Kutter, T. Laurell and H. Bruus, Acoustic resonances in straight micro channels: Beyond the 1d-approximation,, Lab Chip, 8 (2008), 1178. Google Scholar [7] M. F. Hamilton and C. L. Morfey, In: M.F. Hamilton and D.T. Blackstock, (eds.),, Nonlinear Acoustics, (1998), 41. Google Scholar [8] P. M. Jordan, An analytical study of Kuznetsov's equation: Diffusive solitons, shock formation, and solution bifurcation,, Physics Letters A, 326 (2004), 77. doi: 10.1016/j.physleta.2004.03.067. Google Scholar [9] P. M. Jordan, G. V. Norton, S. A. Chin-Bing and A. Warn-Varnas, On the propagation of nonlinear acoustic waves in viscous and thermoviscous fluids,, European Journal of Mechanics B-Fluids, 34 (2012), 56. doi: 10.1016/j.euromechflu.2012.01.016. Google Scholar [10] B. Kaltenbacher, Mathematics of nonlinear acoustics,, Evolutiuon equations and control theory, 4 (2015), 447. doi: 10.3934/eect.2015.4.447. Google Scholar [11] R. S. Keiffer, R. McNorton, P. M. Jordan and I. C. Christov, Dissipative acoustic solitons under a weakly-nonlinear, Lagrangian-averaged Euler-$\alpha$ model of single-phase lossless fluids,, Wave Motion, 48 (2011), 782. doi: 10.1016/j.wavemoti.2011.04.013. Google Scholar [12] V. P. Kuznetsov, Equations of nonlinear acoustics,, Sov. Phys. Acoust., 16 (1971), 467. Google Scholar [13] S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, part I,, Acustica, 82 (1996), 579. Google Scholar [14] NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/,, Release 1.0.10 of 2015-08-07. Online companion to [OLBC10]., (): 2015. Google Scholar [15] W. L. Nyborg, Acoustic streaming,, Physical Acoustics, 2 (1965), 265. doi: 10.1016/B978-0-12-395662-0.50015-1. Google Scholar [16] A. R. Rasmussen, M. P. Sørensen, Yu. B. Gaididei and P. L. Christiansen, Interacting wave fronts and rarefaction waves in a second order model of nonlinear thermoviscous fluids,, Acta Appl. Math., 115 (2011), 43. doi: 10.1007/s10440-010-9581-7. Google Scholar [17] Anders Rønne Rasmussen, Thermoviscous Model Equations in Nonlinear Acoustics,, Ph.D Thesis, (2009). Google Scholar
 [1] Ivan C. Christov. Nonlinear acoustics and shock formation in lossless barotropic Green--Naghdi fluids. Evolution Equations & Control Theory, 2016, 5 (3) : 349-365. doi: 10.3934/eect.2016008 [2] Xiao-Biao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : i-ii. doi: 10.3934/dcds.2004.10.4i [3] Barbara Kaltenbacher. Mathematics of nonlinear acoustics. Evolution Equations & Control Theory, 2015, 4 (4) : 447-491. doi: 10.3934/eect.2015.4.447 [4] James K. Knowles. On shock waves in solids. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 573-580. doi: 10.3934/dcdsb.2007.7.573 [5] Elena Kartashova. Nonlinear resonances of water waves. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607 [6] Angelo Morro. Nonlinear waves in thermoelastic dielectrics. Evolution Equations & Control Theory, 2019, 8 (1) : 149-162. doi: 10.3934/eect.2019009 [7] Jerry L. Bona, Thierry Colin, Colette Guillopé. Propagation of long-crested water waves. Ⅱ. Bore propagation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5543-5569. doi: 10.3934/dcds.2019244 [8] Margaret Beck. Stability of nonlinear waves: Pointwise estimates. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 191-211. doi: 10.3934/dcdss.2017010 [9] Jerry Bona, Hongqiu Chen. Solitary waves in nonlinear dispersive systems. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 313-378. doi: 10.3934/dcdsb.2002.2.313 [10] Frederike Kissling, Christian Rohde. The computation of nonclassical shock waves with a heterogeneous multiscale method. Networks & Heterogeneous Media, 2010, 5 (3) : 661-674. doi: 10.3934/nhm.2010.5.661 [11] Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks & Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23 [12] John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations & Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001 [13] Mina Jiang, Changjiang Zhu. Convergence rates to nonlinear diffusion waves for $p$-system with nonlinear damping on quadrant. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 887-918. doi: 10.3934/dcds.2009.23.887 [14] Pedro M. Jordan, Barbara Kaltenbacher. Introduction to the special volume Mathematics of nonlinear acoustics: New approaches in analysis and modeling''. Evolution Equations & Control Theory, 2016, 5 (3) : i-ii. doi: 10.3934/eect.201603i [15] H. T. Banks, R.C. Smith. Feedback control of noise in a 2-D nonlinear structural acoustics model. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 119-149. doi: 10.3934/dcds.1995.1.119 [16] Peter Howard, K. Zumbrun. The Evans function and stability criteria for degenerate viscous shock waves. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 837-855. doi: 10.3934/dcds.2004.10.837 [17] Denis Serre, Alexis F. Vasseur. The relative entropy method for the stability of intermediate shock waves; the rich case. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4569-4577. doi: 10.3934/dcds.2016.36.4569 [18] Thierry Colin, Pierre Fabrie. Semidiscretization in time for nonlinear Schrödinger-waves equations. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 671-690. doi: 10.3934/dcds.1998.4.671 [19] Juan Belmonte-Beitia, Vladyslav Prytula. Existence of solitary waves in nonlinear equations of Schrödinger type. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1007-1017. doi: 10.3934/dcdss.2011.4.1007 [20] Masahito Ohta. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1671-1680. doi: 10.3934/cpaa.2018080

2018 Impact Factor: 1.048