September  2016, 5(3): 349-365. doi: 10.3934/eect.2016008

Nonlinear acoustics and shock formation in lossless barotropic Green--Naghdi fluids

1. 

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States

Received  January 2016 Revised  January 2016 Published  August 2016

The equations of motion of lossless compressible nonclassical fluids under the so-called Green--Naghdi theory are considered for two classes of barotropic fluids: (i) perfect gases and (ii) liquids obeying a quadratic equation of state. An exact reduction in terms of a scalar acoustic potential and the (scalar) thermal displacement is achieved. Properties and simplifications of these model nonlinear acoustic equations for unidirectional flows are noted. Specifically, the requirement that the governing system of equations for such flows remain hyperbolic is shown to lead to restrictions on the physical parameters and/or applicability of the model. A weakly nonlinear model is proposed on the basis of neglecting only terms proportional to the square of the Mach number in the governing equations, without any further approximation or modification of the nonlinear terms. Shock formation via acceleration wave blow up is studied numerically in a one-dimensional context using a high-resolution Godunov-type finite-volume scheme, thereby verifying prior analytical results on the blow up time and contrasting these results with the corresponding ones for classical (Euler, i.e., lossless compressible) fluids.
Citation: Ivan C. Christov. Nonlinear acoustics and shock formation in lossless barotropic Green--Naghdi fluids. Evolution Equations & Control Theory, 2016, 5 (3) : 349-365. doi: 10.3934/eect.2016008
References:
[1]

W. F. Ames, Discontinuity formation in solutions of homogeneous non-linear hyperbolic equations possessing smooth initial data,, Int. J. Non-Linear Mech., 5 (1970), 605. doi: 10.1016/0020-7462(70)90050-8. Google Scholar

[2]

S. Bargmann, Remarks on the Green-Naghdi theory of heat conduction,, J. Non-Equilib. Thermodyn., 38 (2013), 101. doi: 10.1515/jnetdy-2012-0015. Google Scholar

[3]

S. Bargmann and P. Steinmann, Modeling and simulation of first and second sound in solids,, Int. J. Solids Structures, 45 (2008), 6067. doi: 10.1016/j.ijsolstr.2008.07.026. Google Scholar

[4]

S. Bargmann, P. Steinmann and P. M. Jordan, On the propagation of second-sound in linear and nonlinear media: Results from Green-Naghdi theory,, Phys. Lett. A, 372 (2008), 4418. doi: 10.1016/j.physleta.2008.04.010. Google Scholar

[5]

R. T. Beyer, The parameter $B/A$,, in Nonlinear Acoustics: Theory and Applications (eds. M. F. Hamilton and D. T. Blackstock), (1997), 25. Google Scholar

[6]

J. Bissell and B. Straughan, Discontinuity waves as tipping points: Applications to biological & sociological systems,, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1911. doi: 10.3934/dcdsb.2014.19.1911. Google Scholar

[7]

D. T. Blackstock, Approximate equations governing finite-amplitude sound in thermoviscous fluids,, GD/E Report GD-1463-52, (1963), 1463. Google Scholar

[8]

D. T. Blackstock, Propagation of plane sound waves of finite amplitude in nondissipative fluids,, J. Acoust. Soc. Am., 34 (1962), 9. doi: 10.1121/1.1909033. Google Scholar

[9]

B. Brunnhuber and B. Kaltenbacher, Well-posedness and asymptotic behavior of solutions for the Blackstock-Crighton-Westervelt equation,, Discrete Contin. Dyn. Syst. Ser. A, 34 (2014), 4515. doi: 10.3934/dcds.2014.34.4515. Google Scholar

[10]

B. Brunnhuber, B. Kaltenbacher and P. Radu, Relaxation of regularity for the Westervelt equation by nonlinear damping with applications in acoustic-acoustic and elastic-acoustic coupling,, Evol. Equ. Control Theory, 3 (2014), 595. doi: 10.3934/eect.2014.3.595. Google Scholar

[11]

B. Brunnhuber, Well-posedness and exponential decay of solutions for the Blackstock-Crighton-Kuznetsov equation,, J. Math. Anal. Appl., 433 (2016), 1037. doi: 10.1016/j.jmaa.2015.07.046. Google Scholar

[12]

B. Brunnhuber and P. M. Jordan, On the reduction of Blackstock's model of thermoviscous compressible flow via Becker's assumption,, Int. J. Non-Linear Mech., 78 (2016), 131. doi: 10.1016/j.ijnonlinmec.2015.10.008. Google Scholar

[13]

P. J. Chen, Growth and decay of waves in solids,, in Handbuch der Physik, (1973), 303. Google Scholar

[14]

P. J. Chen, On the growth and decay of one-dimensional temperature rate waves,, Arch. Ration. Mech. Anal., 35 (1969), 1. doi: 10.1007/BF00248491. Google Scholar

[15]

M. Chen, M. Torres and T. Walsh, Existence of travelling wave solutions of a high-order nonlinear acoustic wave equation,, Phys. Lett. A, 373 (2009), 1037. doi: 10.1016/j.physleta.2009.01.042. Google Scholar

[16]

W. Chester, Resonant oscillations in closed tubes,, J. Fluid Mech., 18 (1964), 44. doi: 10.1017/S0022112064000040. Google Scholar

[17]

I. Christov, C. I. Christov and P. M. Jordan, Modeling weakly nonlinear acoustic wave propagation,, Q. J. Mech. Appl. Math., 60 (2007), 473. doi: 10.1093/qjmam/hbm017. Google Scholar

[18]

I. Christov, C. I. Christov and P. M. Jordan, Corrigendum and addendum: Modeling weakly nonlinear acoustic wave propagation,, Q. J. Mech. Appl. Math., 68 (2015), 231. doi: 10.1093/qjmam/hbu023. Google Scholar

[19]

I. C. Christov, P. M. Jordan, S. A. Chin-Bing and A. Warn-Varnas, Acoustic traveling waves in thermoviscous perfect gases: Kinks, acceleration waves, and shocks under the Taylor-Lighthill balance,, Math. Comput. Simulat., 127 (2016), 2. doi: 10.1016/j.matcom.2013.03.011. Google Scholar

[20]

I. Christov, P. M. Jordan and C. I. Christov, Nonlinear acoustic propagation in homentropic perfect gases: A numerical study,, Phys. Lett. A, 353 (2006), 273. doi: 10.1016/j.physleta.2005.12.101. Google Scholar

[21]

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert $W$ function,, Adv. Comput. Math., 5 (1996), 329. doi: 10.1007/BF02124750. Google Scholar

[22]

D. G. Crighton, Model equations of nonlinear acoustics,, Annu. Rev. Fluid Mech., 11 (1979), 11. doi: 10.1146/annurev.fl.11.010179.000303. Google Scholar

[23]

A. M. J. Davis and H. Brenner, Thermal and viscous effects on sound waves: Revised classical theory,, J. Acoust. Soc. Am., 132 (2012), 2963. doi: 10.1121/1.4757971. Google Scholar

[24]

A. R. Elcrat, On the propagation of sonic discontinuities in the unsteady flow of a perfect gas,, Int. J. Eng. Sci., 15 (1977), 29. doi: 10.1016/0020-7225(77)90066-0. Google Scholar

[25]

Y. B. Fu and N. H. Scott, The transition from acceleration wave to shock wave,, Int. J. Eng. Sci., 29 (1991), 617. doi: 10.1016/0020-7225(91)90066-C. Google Scholar

[26]

A. E. Green and P. M. Naghdi, A new thermoviscous theory for fluids,, J. Non-Newtonian Fluid Mech., 56 (1995), 289. doi: 10.1016/0377-0257(94)01288-S. Google Scholar

[27]

A. E. Green and P. M. Naghdi, An extended theory for incompressible viscous fluid flow,, J. Non-Newtonian Fluid Mech., 66 (1996), 233. doi: 10.1016/S0377-0257(96)01478-4. Google Scholar

[28]

A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media. I. Classical continuum physics,, Proc. R. Soc. Lond. A, 448 (1995), 335. doi: 10.1098/rspa.1995.0020. Google Scholar

[29]

A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media. II. Generalized continua,, Proc. R. Soc. Lond. A, 448 (1995), 357. doi: 10.1098/rspa.1995.0021. Google Scholar

[30]

A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media. III. Mixtures of interacting continua,, Proc. R. Soc. Lond. A, 448 (1995), 379. doi: 10.1098/rspa.1995.0022. Google Scholar

[31]

M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds,, Arch. Rational Mech. Anal., 31 (1968), 113. doi: 10.1007/BF00281373. Google Scholar

[32]

M. F. Hamilton and C. L. Morfey, Model equations,, in Nonlinear Acoustics: Theory and Applications (eds. M. F. Hamilton and D. T. Blackstock), (1997), 41. Google Scholar

[33]

B. M. Johnson, Analytical shock solutions at large and small Prandtl number,, J. Fluid Mech., 726 (2013). doi: 10.1017/jfm.2013.262. Google Scholar

[34]

B. M. Johnson, Closed-form shock solutions,, J. Fluid Mech., 745 (2014). doi: 10.1017/jfm.2014.107. Google Scholar

[35]

P. M. Jordan, A survey of weakly-nonlinear acoustic models: 1910-2009,, Mech. Res. Commun., 73 (2016), 127. doi: 10.1016/j.mechrescom.2016.02.014. Google Scholar

[36]

P. M. Jordan, An analytical study of Kuznetsov's equation: Diffusive solitons, shock formation, and solution bifurcation,, Phys. Lett. A, 326 (2004), 77. doi: 10.1016/j.physleta.2004.03.067. Google Scholar

[37]

P. M. Jordan, Second-sound phenomena in inviscid, thermally relaxing gases,, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2189. doi: 10.3934/dcdsb.2014.19.2189. Google Scholar

[38]

P. M. Jordan, A note on the Lambert $W$-function: Applications in the mathematical and physical sciences,, in Mathematics of Continuous and Discrete Dynamical Systems (ed. A. B. Gumel), 618 (2014), 247. doi: 10.1090/conm/618. Google Scholar

[39]

P. M. Jordan and C. I. Christov, A simple finite difference scheme for modeling the finite-time blow-up of acoustic acceleration waves,, J. Sound Vib., 281 (2005), 1207. doi: 10.1016/j.jsv.2004.03.067. Google Scholar

[40]

P. M. Jordan and B. Straughan, Acoustic acceleration waves in homentropic Green and Naghdi gases,, Proc. R. Soc. A, 462 (2006), 3601. doi: 10.1098/rspa.2006.1739. Google Scholar

[41]

P. M. Jordan, G. V. Norton, S. A. Chin-Bing and A. Warn-Varnas, On the propagation of nonlinear acoustic waves in viscous and thermoviscous fluids,, Eur. J. Mech. B/Fluids, 34 (2012), 56. doi: 10.1016/j.euromechflu.2012.01.016. Google Scholar

[42]

B. Kaltenbacher, Mathematics of nonlinear acoustics,, Evol. Equ. Control Theory, 4 (2015), 447. doi: 10.3934/eect.2015.4.447. Google Scholar

[43]

B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 503. doi: 10.3934/dcdss.2009.2.503. Google Scholar

[44]

B. Kaltenbacher, Boundary observability and stabilization for Westervelt type wave equations without interior damping,, Appl. Math. Optim., 62 (2010), 381. doi: 10.1007/s00245-010-9108-7. Google Scholar

[45]

B. Kaltenbacher, I. Lasiecka and S. Veljović, Well-posedness and exponential decay for the Westervelt equation with inhomogeneous Dirichlet boundary data,, in Parabolic Problems: Herbert Amann Festschrift (eds. J. Escher et al.), 80 (2011), 357. doi: 10.1007/978-3-0348-0075-4_19. Google Scholar

[46]

B. Kaltenbacher and I. Lasiecka, An analysis of nonhomogeneous Kuznetsov's equation: Local and global well-posedness; exponential decay,, Math. Nachr., 285 (2012), 295. doi: 10.1002/mana.201000007. Google Scholar

[47]

R. S. Keiffer, R. McNorton, P. M. Jordan and I. C. Christov, Dissipative acoustic solitons under a weakly-nonlinear, Lagrangian-averaged Euler-$\alpha$ model of single-phase lossless fluids,, Wave Motion, 48 (2011), 782. doi: 10.1016/j.wavemoti.2011.04.013. Google Scholar

[48]

W. Lauterborn, T. Kurz and I. Akhatov, Nonlinear acoustics in fluids,, in Springer Handbook of Acoustics (ed. T. D. Rossing), (2007), 257. doi: 10.1007/978-0-387-30425-0_8. Google Scholar

[49]

P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves,, Society for Industrial and Applied Mathematics, (1973). doi: 10.1137/1.9781611970562. Google Scholar

[50]

M. B. Lesser and R. Seebass, The structure of a weak shock wave undergoing reflexion from a wall,, J. Fluid Mech., 31 (1968), 501. doi: 10.1017/S0022112068000303. Google Scholar

[51]

R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems,, Cambridge University Press, (2002). doi: 10.1017/CBO9780511791253. Google Scholar

[52]

H. Lin and A. J. Szeri, Shock formation in the presence of entropy gradients,, J. Fluid Mech., 431 (2001), 161. doi: 10.1017/S0022112000003104. Google Scholar

[53]

K. A. Lindsay and B. Straughan, Acceleration waves and second sound in a perfect fluid,, Arch. Rational Mech. Anal., 68 (1978), 53. doi: 10.1007/BF00276179. Google Scholar

[54]

S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, Part I,, Acta Acoust. united Ac., 82 (1996), 579. Google Scholar

[55]

S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, Part II,, Acta Acust. united Ac., 83 (1997), 197. Google Scholar

[56]

S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, Part III,, Acta Acust. united Ac., 83 (1997), 827. Google Scholar

[57]

A. Morro, Jump relations and discontinuity waves in conductors with memory,, Math. Comput. Modell., 43 (2006), 138. doi: 10.1016/j.mcm.2005.04.016. Google Scholar

[58]

K. Naugolnykh and L. Ostrovsky, Nonlinear Wave Processes in Acoustics,, Cambridge University Press, (1998). doi: 10.2277/052139984X. Google Scholar

[59]

H. Ockendon and J. R. Ockendon, Waves and Compressible Flow,, Springer, (2004). doi: 10.1007/b97537. Google Scholar

[60]

H. Ockendon and J. R. Ockendon, Nonlinearity in fluid resonances,, Meccanica, 36 (2001), 297. doi: 10.1023/A:1013911407811. Google Scholar

[61]

M. Ostoja-Starzewski and J. Trębicki, On the growth and decay of acceleration waves in random media,, Proc. R. Soc. Lond. A, 455 (1999), 2577. doi: 10.1098/rspa.1999.0418. Google Scholar

[62]

R. Quintanilla and B. Straughan, Nonlinear waves in a Green-Naghdi dissipationless fluid,, J. Non-Newtonian Fluid Mech., 154 (2008), 207. doi: 10.1016/j.jnnfm.2008.04.006. Google Scholar

[63]

R. Quintanilla and B. Straughan, Green-Naghdi type III viscous fluids,, Int. J. Heat Mass Transf., 55 (2012), 710. doi: 10.1016/j.ijheatmasstransfer.2011.10.039. Google Scholar

[64]

A. R. Rassmusen, M. P. Sørensen, Yu. B. Gaididei and P. L. Christiansen, Interacting wave fronts and rarefaction waves in a second order model of nonlinear thermoviscous fluids,, Acta Appl. Math., 115 (2011), 43. doi: 10.1007/s10440-010-9581-7. Google Scholar

[65]

A. R. Rasmussen, M. P. Sørensen, Yu. B. Gaididei and P. L. Christiansen, Compound waves in a higher order nonlinear model of thermoviscous fluids,, Math. Comput. Simulat., 127 (2016), 236. doi: 10.1016/j.matcom.2014.01.009. Google Scholar

[66]

R. A. Saenger and G. E. Hudson, Periodic shock waves in resonating gas columns,, J. Acoust. Soc. Am., 32 (1960), 961. doi: 10.1121/1.1908343. Google Scholar

[67]

L. I. Sedov, Mechanics of Continuous Media,, World Scientific, (1997). doi: 10.1142/0712. Google Scholar

[68]

R. L. Seliger and G. B. Whitham, Variational principles in continuum mechanics,, \emph{Proc. R. Soc. A}, 305 (1968), 1. doi: 10.1098/rspa.1968.0103. Google Scholar

[69]

L. H. Söderholm, A higher order acoustic equation for the slightly viscous case,, Acta Acust. united Ac., 87 (2000), 29. Google Scholar

[70]

B. Straughan, Green-Naghdi fluid with non-thermal equilibrium effects,, Proc. R. Soc. A, 466 (2010), 2021. doi: 10.1098/rspa.2009.0523. Google Scholar

[71]

B. Straughan, Heat Waves,, Springer, (2011). doi: 10.1007/978-1-4614-0493-4. Google Scholar

[72]

B. Straughan, Shocks and acceleration waves in modern continuum mechanics and in social systems,, Evol. Equ. Control Theory, 3 (2014), 541. doi: 10.3934/eect.2014.3.541. Google Scholar

[73]

P. A. Thompson, Compressible-Fluid Dynamics,, McGraw-Hill, (1972). Google Scholar

[74]

T. Y. Thomas, The growth and decay of sonic discontinuities in ideal gases,, J. Math. Mech., 6 (1957), 455. doi: 10.1512/iumj.1957.6.56022. Google Scholar

[75]

E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics,, $3^{rd}$ edition, (2009). doi: 10.1007/b79761. Google Scholar

[76]

G. B. Whitham, Linear and Nonlinear Waves,, Wiley-Interscience, (1974). doi: 10.1002/9781118032954. Google Scholar

[77]

T. W. Wright, An intrinsic description of unsteady shock waves,, Q. J. Mech. Appl. Math., 29 (1976), 311. doi: 10.1093/qjmam/29.3.311. Google Scholar

show all references

References:
[1]

W. F. Ames, Discontinuity formation in solutions of homogeneous non-linear hyperbolic equations possessing smooth initial data,, Int. J. Non-Linear Mech., 5 (1970), 605. doi: 10.1016/0020-7462(70)90050-8. Google Scholar

[2]

S. Bargmann, Remarks on the Green-Naghdi theory of heat conduction,, J. Non-Equilib. Thermodyn., 38 (2013), 101. doi: 10.1515/jnetdy-2012-0015. Google Scholar

[3]

S. Bargmann and P. Steinmann, Modeling and simulation of first and second sound in solids,, Int. J. Solids Structures, 45 (2008), 6067. doi: 10.1016/j.ijsolstr.2008.07.026. Google Scholar

[4]

S. Bargmann, P. Steinmann and P. M. Jordan, On the propagation of second-sound in linear and nonlinear media: Results from Green-Naghdi theory,, Phys. Lett. A, 372 (2008), 4418. doi: 10.1016/j.physleta.2008.04.010. Google Scholar

[5]

R. T. Beyer, The parameter $B/A$,, in Nonlinear Acoustics: Theory and Applications (eds. M. F. Hamilton and D. T. Blackstock), (1997), 25. Google Scholar

[6]

J. Bissell and B. Straughan, Discontinuity waves as tipping points: Applications to biological & sociological systems,, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1911. doi: 10.3934/dcdsb.2014.19.1911. Google Scholar

[7]

D. T. Blackstock, Approximate equations governing finite-amplitude sound in thermoviscous fluids,, GD/E Report GD-1463-52, (1963), 1463. Google Scholar

[8]

D. T. Blackstock, Propagation of plane sound waves of finite amplitude in nondissipative fluids,, J. Acoust. Soc. Am., 34 (1962), 9. doi: 10.1121/1.1909033. Google Scholar

[9]

B. Brunnhuber and B. Kaltenbacher, Well-posedness and asymptotic behavior of solutions for the Blackstock-Crighton-Westervelt equation,, Discrete Contin. Dyn. Syst. Ser. A, 34 (2014), 4515. doi: 10.3934/dcds.2014.34.4515. Google Scholar

[10]

B. Brunnhuber, B. Kaltenbacher and P. Radu, Relaxation of regularity for the Westervelt equation by nonlinear damping with applications in acoustic-acoustic and elastic-acoustic coupling,, Evol. Equ. Control Theory, 3 (2014), 595. doi: 10.3934/eect.2014.3.595. Google Scholar

[11]

B. Brunnhuber, Well-posedness and exponential decay of solutions for the Blackstock-Crighton-Kuznetsov equation,, J. Math. Anal. Appl., 433 (2016), 1037. doi: 10.1016/j.jmaa.2015.07.046. Google Scholar

[12]

B. Brunnhuber and P. M. Jordan, On the reduction of Blackstock's model of thermoviscous compressible flow via Becker's assumption,, Int. J. Non-Linear Mech., 78 (2016), 131. doi: 10.1016/j.ijnonlinmec.2015.10.008. Google Scholar

[13]

P. J. Chen, Growth and decay of waves in solids,, in Handbuch der Physik, (1973), 303. Google Scholar

[14]

P. J. Chen, On the growth and decay of one-dimensional temperature rate waves,, Arch. Ration. Mech. Anal., 35 (1969), 1. doi: 10.1007/BF00248491. Google Scholar

[15]

M. Chen, M. Torres and T. Walsh, Existence of travelling wave solutions of a high-order nonlinear acoustic wave equation,, Phys. Lett. A, 373 (2009), 1037. doi: 10.1016/j.physleta.2009.01.042. Google Scholar

[16]

W. Chester, Resonant oscillations in closed tubes,, J. Fluid Mech., 18 (1964), 44. doi: 10.1017/S0022112064000040. Google Scholar

[17]

I. Christov, C. I. Christov and P. M. Jordan, Modeling weakly nonlinear acoustic wave propagation,, Q. J. Mech. Appl. Math., 60 (2007), 473. doi: 10.1093/qjmam/hbm017. Google Scholar

[18]

I. Christov, C. I. Christov and P. M. Jordan, Corrigendum and addendum: Modeling weakly nonlinear acoustic wave propagation,, Q. J. Mech. Appl. Math., 68 (2015), 231. doi: 10.1093/qjmam/hbu023. Google Scholar

[19]

I. C. Christov, P. M. Jordan, S. A. Chin-Bing and A. Warn-Varnas, Acoustic traveling waves in thermoviscous perfect gases: Kinks, acceleration waves, and shocks under the Taylor-Lighthill balance,, Math. Comput. Simulat., 127 (2016), 2. doi: 10.1016/j.matcom.2013.03.011. Google Scholar

[20]

I. Christov, P. M. Jordan and C. I. Christov, Nonlinear acoustic propagation in homentropic perfect gases: A numerical study,, Phys. Lett. A, 353 (2006), 273. doi: 10.1016/j.physleta.2005.12.101. Google Scholar

[21]

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert $W$ function,, Adv. Comput. Math., 5 (1996), 329. doi: 10.1007/BF02124750. Google Scholar

[22]

D. G. Crighton, Model equations of nonlinear acoustics,, Annu. Rev. Fluid Mech., 11 (1979), 11. doi: 10.1146/annurev.fl.11.010179.000303. Google Scholar

[23]

A. M. J. Davis and H. Brenner, Thermal and viscous effects on sound waves: Revised classical theory,, J. Acoust. Soc. Am., 132 (2012), 2963. doi: 10.1121/1.4757971. Google Scholar

[24]

A. R. Elcrat, On the propagation of sonic discontinuities in the unsteady flow of a perfect gas,, Int. J. Eng. Sci., 15 (1977), 29. doi: 10.1016/0020-7225(77)90066-0. Google Scholar

[25]

Y. B. Fu and N. H. Scott, The transition from acceleration wave to shock wave,, Int. J. Eng. Sci., 29 (1991), 617. doi: 10.1016/0020-7225(91)90066-C. Google Scholar

[26]

A. E. Green and P. M. Naghdi, A new thermoviscous theory for fluids,, J. Non-Newtonian Fluid Mech., 56 (1995), 289. doi: 10.1016/0377-0257(94)01288-S. Google Scholar

[27]

A. E. Green and P. M. Naghdi, An extended theory for incompressible viscous fluid flow,, J. Non-Newtonian Fluid Mech., 66 (1996), 233. doi: 10.1016/S0377-0257(96)01478-4. Google Scholar

[28]

A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media. I. Classical continuum physics,, Proc. R. Soc. Lond. A, 448 (1995), 335. doi: 10.1098/rspa.1995.0020. Google Scholar

[29]

A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media. II. Generalized continua,, Proc. R. Soc. Lond. A, 448 (1995), 357. doi: 10.1098/rspa.1995.0021. Google Scholar

[30]

A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media. III. Mixtures of interacting continua,, Proc. R. Soc. Lond. A, 448 (1995), 379. doi: 10.1098/rspa.1995.0022. Google Scholar

[31]

M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds,, Arch. Rational Mech. Anal., 31 (1968), 113. doi: 10.1007/BF00281373. Google Scholar

[32]

M. F. Hamilton and C. L. Morfey, Model equations,, in Nonlinear Acoustics: Theory and Applications (eds. M. F. Hamilton and D. T. Blackstock), (1997), 41. Google Scholar

[33]

B. M. Johnson, Analytical shock solutions at large and small Prandtl number,, J. Fluid Mech., 726 (2013). doi: 10.1017/jfm.2013.262. Google Scholar

[34]

B. M. Johnson, Closed-form shock solutions,, J. Fluid Mech., 745 (2014). doi: 10.1017/jfm.2014.107. Google Scholar

[35]

P. M. Jordan, A survey of weakly-nonlinear acoustic models: 1910-2009,, Mech. Res. Commun., 73 (2016), 127. doi: 10.1016/j.mechrescom.2016.02.014. Google Scholar

[36]

P. M. Jordan, An analytical study of Kuznetsov's equation: Diffusive solitons, shock formation, and solution bifurcation,, Phys. Lett. A, 326 (2004), 77. doi: 10.1016/j.physleta.2004.03.067. Google Scholar

[37]

P. M. Jordan, Second-sound phenomena in inviscid, thermally relaxing gases,, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2189. doi: 10.3934/dcdsb.2014.19.2189. Google Scholar

[38]

P. M. Jordan, A note on the Lambert $W$-function: Applications in the mathematical and physical sciences,, in Mathematics of Continuous and Discrete Dynamical Systems (ed. A. B. Gumel), 618 (2014), 247. doi: 10.1090/conm/618. Google Scholar

[39]

P. M. Jordan and C. I. Christov, A simple finite difference scheme for modeling the finite-time blow-up of acoustic acceleration waves,, J. Sound Vib., 281 (2005), 1207. doi: 10.1016/j.jsv.2004.03.067. Google Scholar

[40]

P. M. Jordan and B. Straughan, Acoustic acceleration waves in homentropic Green and Naghdi gases,, Proc. R. Soc. A, 462 (2006), 3601. doi: 10.1098/rspa.2006.1739. Google Scholar

[41]

P. M. Jordan, G. V. Norton, S. A. Chin-Bing and A. Warn-Varnas, On the propagation of nonlinear acoustic waves in viscous and thermoviscous fluids,, Eur. J. Mech. B/Fluids, 34 (2012), 56. doi: 10.1016/j.euromechflu.2012.01.016. Google Scholar

[42]

B. Kaltenbacher, Mathematics of nonlinear acoustics,, Evol. Equ. Control Theory, 4 (2015), 447. doi: 10.3934/eect.2015.4.447. Google Scholar

[43]

B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 503. doi: 10.3934/dcdss.2009.2.503. Google Scholar

[44]

B. Kaltenbacher, Boundary observability and stabilization for Westervelt type wave equations without interior damping,, Appl. Math. Optim., 62 (2010), 381. doi: 10.1007/s00245-010-9108-7. Google Scholar

[45]

B. Kaltenbacher, I. Lasiecka and S. Veljović, Well-posedness and exponential decay for the Westervelt equation with inhomogeneous Dirichlet boundary data,, in Parabolic Problems: Herbert Amann Festschrift (eds. J. Escher et al.), 80 (2011), 357. doi: 10.1007/978-3-0348-0075-4_19. Google Scholar

[46]

B. Kaltenbacher and I. Lasiecka, An analysis of nonhomogeneous Kuznetsov's equation: Local and global well-posedness; exponential decay,, Math. Nachr., 285 (2012), 295. doi: 10.1002/mana.201000007. Google Scholar

[47]

R. S. Keiffer, R. McNorton, P. M. Jordan and I. C. Christov, Dissipative acoustic solitons under a weakly-nonlinear, Lagrangian-averaged Euler-$\alpha$ model of single-phase lossless fluids,, Wave Motion, 48 (2011), 782. doi: 10.1016/j.wavemoti.2011.04.013. Google Scholar

[48]

W. Lauterborn, T. Kurz and I. Akhatov, Nonlinear acoustics in fluids,, in Springer Handbook of Acoustics (ed. T. D. Rossing), (2007), 257. doi: 10.1007/978-0-387-30425-0_8. Google Scholar

[49]

P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves,, Society for Industrial and Applied Mathematics, (1973). doi: 10.1137/1.9781611970562. Google Scholar

[50]

M. B. Lesser and R. Seebass, The structure of a weak shock wave undergoing reflexion from a wall,, J. Fluid Mech., 31 (1968), 501. doi: 10.1017/S0022112068000303. Google Scholar

[51]

R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems,, Cambridge University Press, (2002). doi: 10.1017/CBO9780511791253. Google Scholar

[52]

H. Lin and A. J. Szeri, Shock formation in the presence of entropy gradients,, J. Fluid Mech., 431 (2001), 161. doi: 10.1017/S0022112000003104. Google Scholar

[53]

K. A. Lindsay and B. Straughan, Acceleration waves and second sound in a perfect fluid,, Arch. Rational Mech. Anal., 68 (1978), 53. doi: 10.1007/BF00276179. Google Scholar

[54]

S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, Part I,, Acta Acoust. united Ac., 82 (1996), 579. Google Scholar

[55]

S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, Part II,, Acta Acust. united Ac., 83 (1997), 197. Google Scholar

[56]

S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, Part III,, Acta Acust. united Ac., 83 (1997), 827. Google Scholar

[57]

A. Morro, Jump relations and discontinuity waves in conductors with memory,, Math. Comput. Modell., 43 (2006), 138. doi: 10.1016/j.mcm.2005.04.016. Google Scholar

[58]

K. Naugolnykh and L. Ostrovsky, Nonlinear Wave Processes in Acoustics,, Cambridge University Press, (1998). doi: 10.2277/052139984X. Google Scholar

[59]

H. Ockendon and J. R. Ockendon, Waves and Compressible Flow,, Springer, (2004). doi: 10.1007/b97537. Google Scholar

[60]

H. Ockendon and J. R. Ockendon, Nonlinearity in fluid resonances,, Meccanica, 36 (2001), 297. doi: 10.1023/A:1013911407811. Google Scholar

[61]

M. Ostoja-Starzewski and J. Trębicki, On the growth and decay of acceleration waves in random media,, Proc. R. Soc. Lond. A, 455 (1999), 2577. doi: 10.1098/rspa.1999.0418. Google Scholar

[62]

R. Quintanilla and B. Straughan, Nonlinear waves in a Green-Naghdi dissipationless fluid,, J. Non-Newtonian Fluid Mech., 154 (2008), 207. doi: 10.1016/j.jnnfm.2008.04.006. Google Scholar

[63]

R. Quintanilla and B. Straughan, Green-Naghdi type III viscous fluids,, Int. J. Heat Mass Transf., 55 (2012), 710. doi: 10.1016/j.ijheatmasstransfer.2011.10.039. Google Scholar

[64]

A. R. Rassmusen, M. P. Sørensen, Yu. B. Gaididei and P. L. Christiansen, Interacting wave fronts and rarefaction waves in a second order model of nonlinear thermoviscous fluids,, Acta Appl. Math., 115 (2011), 43. doi: 10.1007/s10440-010-9581-7. Google Scholar

[65]

A. R. Rasmussen, M. P. Sørensen, Yu. B. Gaididei and P. L. Christiansen, Compound waves in a higher order nonlinear model of thermoviscous fluids,, Math. Comput. Simulat., 127 (2016), 236. doi: 10.1016/j.matcom.2014.01.009. Google Scholar

[66]

R. A. Saenger and G. E. Hudson, Periodic shock waves in resonating gas columns,, J. Acoust. Soc. Am., 32 (1960), 961. doi: 10.1121/1.1908343. Google Scholar

[67]

L. I. Sedov, Mechanics of Continuous Media,, World Scientific, (1997). doi: 10.1142/0712. Google Scholar

[68]

R. L. Seliger and G. B. Whitham, Variational principles in continuum mechanics,, \emph{Proc. R. Soc. A}, 305 (1968), 1. doi: 10.1098/rspa.1968.0103. Google Scholar

[69]

L. H. Söderholm, A higher order acoustic equation for the slightly viscous case,, Acta Acust. united Ac., 87 (2000), 29. Google Scholar

[70]

B. Straughan, Green-Naghdi fluid with non-thermal equilibrium effects,, Proc. R. Soc. A, 466 (2010), 2021. doi: 10.1098/rspa.2009.0523. Google Scholar

[71]

B. Straughan, Heat Waves,, Springer, (2011). doi: 10.1007/978-1-4614-0493-4. Google Scholar

[72]

B. Straughan, Shocks and acceleration waves in modern continuum mechanics and in social systems,, Evol. Equ. Control Theory, 3 (2014), 541. doi: 10.3934/eect.2014.3.541. Google Scholar

[73]

P. A. Thompson, Compressible-Fluid Dynamics,, McGraw-Hill, (1972). Google Scholar

[74]

T. Y. Thomas, The growth and decay of sonic discontinuities in ideal gases,, J. Math. Mech., 6 (1957), 455. doi: 10.1512/iumj.1957.6.56022. Google Scholar

[75]

E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics,, $3^{rd}$ edition, (2009). doi: 10.1007/b79761. Google Scholar

[76]

G. B. Whitham, Linear and Nonlinear Waves,, Wiley-Interscience, (1974). doi: 10.1002/9781118032954. Google Scholar

[77]

T. W. Wright, An intrinsic description of unsteady shock waves,, Q. J. Mech. Appl. Math., 29 (1976), 311. doi: 10.1093/qjmam/29.3.311. Google Scholar

[1]

Claudio Giorgi, Diego Grandi, Vittorino Pata. On the Green-Naghdi Type III heat conduction model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2133-2143. doi: 10.3934/dcdsb.2014.19.2133

[2]

Barbara Kaltenbacher. Mathematics of nonlinear acoustics. Evolution Equations & Control Theory, 2015, 4 (4) : 447-491. doi: 10.3934/eect.2015.4.447

[3]

Michael Shearer, Nicholas Giffen. Shock formation and breaking in granular avalanches. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 693-714. doi: 10.3934/dcds.2010.27.693

[4]

Cristóbal Rodero, J. Alberto Conejero, Ignacio García-Fernández. Shock wave formation in compliant arteries. Evolution Equations & Control Theory, 2019, 8 (1) : 221-230. doi: 10.3934/eect.2019012

[5]

Bernard Ducomet, Eduard Feireisl, Hana Petzeltová, Ivan Straškraba. Global in time weak solutions for compressible barotropic self-gravitating fluids. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 113-130. doi: 10.3934/dcds.2004.11.113

[6]

Dong Li, Tong Li. Shock formation in a traffic flow model with Arrhenius look-ahead dynamics. Networks & Heterogeneous Media, 2011, 6 (4) : 681-694. doi: 10.3934/nhm.2011.6.681

[7]

Yuri Gaididei, Anders Rønne Rasmussen, Peter Leth Christiansen, Mads Peter Sørensen. Oscillating nonlinear acoustic shock waves. Evolution Equations & Control Theory, 2016, 5 (3) : 367-381. doi: 10.3934/eect.2016009

[8]

Risei Kano, Yusuke Murase. Solvability of nonlinear evolution equations generated by subdifferentials and perturbations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 75-93. doi: 10.3934/dcdss.2014.7.75

[9]

Lizhi Ruan, Changjiang Zhu. Boundary layer for nonlinear evolution equations with damping and diffusion. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 331-352. doi: 10.3934/dcds.2012.32.331

[10]

Akisato Kubo. Nonlinear evolution equations associated with mathematical models. Conference Publications, 2011, 2011 (Special) : 881-890. doi: 10.3934/proc.2011.2011.881

[11]

Pedro M. Jordan, Barbara Kaltenbacher. Introduction to the special volume ``Mathematics of nonlinear acoustics: New approaches in analysis and modeling''. Evolution Equations & Control Theory, 2016, 5 (3) : i-ii. doi: 10.3934/eect.201603i

[12]

H. T. Banks, R.C. Smith. Feedback control of noise in a 2-D nonlinear structural acoustics model. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 119-149. doi: 10.3934/dcds.1995.1.119

[13]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[14]

Chjan C. Lim. Extremal free energy in a simple mean field theory for a coupled Barotropic fluid - rotating sphere system. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 361-386. doi: 10.3934/dcds.2007.19.361

[15]

Pedro M. Jordan. Finite-amplitude acoustics under the classical theory of particle-laden flows. Evolution Equations & Control Theory, 2019, 8 (1) : 101-116. doi: 10.3934/eect.2019006

[16]

Eduard Feireisl. Mathematical theory of viscous fluids: Retrospective and future perspectives. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 533-555. doi: 10.3934/dcds.2010.27.533

[17]

Marco Caponigro, Anna Chiara Lai, Benedetto Piccoli. A nonlinear model of opinion formation on the sphere. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4241-4268. doi: 10.3934/dcds.2015.35.4241

[18]

Antonio Segatti. Global attractor for a class of doubly nonlinear abstract evolution equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 801-820. doi: 10.3934/dcds.2006.14.801

[19]

Hongqiu Chen, Jerry L. Bona. Periodic traveling--wave solutions of nonlinear dispersive evolution equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4841-4873. doi: 10.3934/dcds.2013.33.4841

[20]

Walter Allegretto, Yanping Lin, Zhiyong Zhang. Convergence to convection-diffusion waves for solutions to dissipative nonlinear evolution equations. Conference Publications, 2009, 2009 (Special) : 11-23. doi: 10.3934/proc.2009.2009.11

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]