March  2016, 5(1): 37-59. doi: 10.3934/eect.2016.5.37

Energy decay rates for solutions of the wave equation with linear damping in exterior domain

1. 

University of Dammam, King Faisal Road, 31952, Dammam, Saudi Arabia

Received  October 2014 Revised  January 2016 Published  March 2016

In this paper we study the behavior of the energy and the $L^{2}$ norm of solutions of the wave equation with localized linear damping in exterior domain. Let $u$ be a solution of the wave system with initial data $\left( u_{0},u_{1}\right) $. We assume that the damper is positive at infinity then under the Geometric Control Condition of Bardos et al [5] (1992), we prove that:
    1. If $(u_{0},u_{1}) $ belong to $H_{0}^{1}( \Omega) \times L^{2}( \Omega ) ,$ then the total energy $ E_{u}(t) \leq C_{0}(1+t) ^{-1}I_{0}$ and $\Vert u(t) \Vert _{L^{2}}^{2}\leq C_{0}I_{0},$ where \begin{equation*} I_{0}=\left\Vert u_{0}\right\Vert _{H^{1}}^{2}+\left\Vert u_{1}\right\Vert _{L^{2}}^{2}. \end{equation*}    2. If the initial data $\left( u_{0},u_{1}\right) $ belong to $ H_{0}^{1}\left( \Omega \right) \times L^{2}\left( \Omega \right) $ and verifies \begin{equation*} \left\Vert d\left( \cdot \right) \left( u_{1}+au_{0}\right) \right\Vert _{L^{2}}<+\infty , \end{equation*} then the total energy $E_{u}\left( t\right) \leq C_{2}\left( 1+t\right) ^{-2}I_{1}$ and $\left\Vert u\left( t\right) \right\Vert _{L^{2}}^{2} \leq C_{2} \left( 1+t\right) ^{-1}I_{1},$ where \begin{equation*} I_{1}=\left\Vert u_{0}\right\Vert _{H^{1}}^{2}+\left\Vert u_{1}\right\Vert _{L^{2}}^{2}+\left\Vert d\left( \cdot \right) \left( u_{1}+au_{0}\right) \right\Vert _{L^{2}}^{2} \end{equation*} and \begin{equation*} d\left( x\right) =\left\{ \begin{array}{lc} \left\vert x\right\vert & d\geq 3, \\ \left\vert x\right\vert \ln \left( B\left\vert x\right\vert \right) & d=2, \end{array} \right. . \end{equation*} with $B$ $\underset{x\in \Omega }{\inf } \left\vert x\right\vert \geq 2$.
Citation: Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37
References:
[1]

L. Aloui, S. Ibrahim and K. Nakanishi, Exponential energy decay for damped Klein-Gordon equation with nonlinearities of arbitrary growth,, Communications in Partial Differential Equations, 36 (2011), 797. doi: 10.1080/03605302.2010.534684. Google Scholar

[2]

L. Aloui and M. Khenissi, Stabilisation de l'équation des ondes dans un domaine extérieur,, Rev. Mat. Iberoamerica, 18 (2002), 1. doi: 10.4171/RMI/309. Google Scholar

[3]

J. Bae and M. Nakao, Energy decay for the wave equation with boundary and localized dissipations in exterior domains,, Math. Nachr., 278 (2005), 771. doi: 10.1002/mana.200310271. Google Scholar

[4]

A. Bchatnia and M. Daoulatli, Local energy decay for the wave equation with a nonlinear time dependent damping,, Appl. Anal., 92 (2013), 2288. doi: 10.1080/00036811.2012.734375. Google Scholar

[5]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optimization, 30 (1992), 1024. doi: 10.1137/0330055. Google Scholar

[6]

N. Burq, Mesures semi-classiques et mesures de défaut, (French) [Semiclassical measures and defect measures], Séminaire Bourbaki, 1996/97 (1997), 167. Google Scholar

[7]

N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes,, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 325 (1997), 749. doi: 10.1016/S0764-4442(97)80053-5. Google Scholar

[8]

W. Dan and Y. Shibata, On a local energy decay of solutions of a dissipative wave equation,, Funkcial. Ekvac., 38 (1995), 545. Google Scholar

[9]

M. Daoulatli, Local energy decay for the nonlinear dissipative wave equation in an exterior domain,, Port. Math., 64 (2007), 39. doi: 10.4171/PM/1775. Google Scholar

[10]

M. Daoulatli, B. Dehman and M. Khenissi, Local energy decay for the elastic system with nonlinear damping in an exterior domain,, SIAM J.Control Optim., 48 (2010), 5254. doi: 10.1137/090757332. Google Scholar

[11]

M. Daoulatli, Behaviors of the energy of solutions of the wave equation with damping and external force,, Journal of Mathematical Analysis and Applications, 389 (2012), 205. doi: 10.1016/j.jmaa.2011.11.051. Google Scholar

[12]

B. Dehman, G. Lebeau and E. Zuazua, Stabilization and control for the subcritical semilinear wave equation,, Ann. Scient. Éc. Norm. Sup., 36 (2003), 525. doi: 10.1016/S0012-9593(03)00021-1. Google Scholar

[13]

G. Francfort, An introduction to H-measures and their applications,, Variational problems in materials science, (2006), 85. doi: 10.1007/3-7643-7565-5_7. Google Scholar

[14]

P. Gérard, Microlocal defect measures,, Comm. Partial Diff. eq., 16 (1991), 1761. doi: 10.1080/03605309108820822. Google Scholar

[15]

P. Gérard and E. Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet problem,, Duke Mathematical Journal, 71 (1993), 559. doi: 10.1215/S0012-7094-93-07122-0. Google Scholar

[16]

R. Ikehata, Energy decay of solutions for the semilinear dissipative wave equations in an exterior domain,, Funkcial. Ekvac., 44 (2001), 487. Google Scholar

[17]

R. Ikehata, Fast decay of solutions for linear wave equations with dissipation localized near infinity in an exterior domain,, Journal of Differential Equations, 188 (2003), 390. doi: 10.1016/S0022-0396(02)00101-8. Google Scholar

[18]

R. Ikehata and T. Matsuyama, L2-behaviour of solutions to the linear heat and wave equations in exterior domains,, Sci. Math. Japon., 55 (2002), 33. Google Scholar

[19]

R. Joly and L. Camille, Stabilization for the semilinear wave equation with geometric control condition,, Anal. PDE, 6 (2013), 1089. doi: 10.2140/apde.2013.6.1089. Google Scholar

[20]

S. Kawashima, M. Nakao and K. Ono, On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term,, J. Math. Soc. Jpn., 47 (1995), 617. doi: 10.2969/jmsj/04740617. Google Scholar

[21]

M. Khenissi, Équation des ondes amorties dans un domaine extérieur,, Bull. Soc. Math. France, 131 (2003), 211. Google Scholar

[22]

P. D. Lax and R. S. Phillips, Scattering Theory,, Pure and Applied Mathematics, (1989). Google Scholar

[23]

G. Lebeau, Equation des ondes amorties,, In Algebraic and geometric methods in mathematical physics, 19 (1996), 73. Google Scholar

[24]

M. Nakao, Stabilization of local energy in an exterior domain for the wave equation with a localized dissipation,, J. Diff. Eq., 148 (1998), 388. doi: 10.1006/jdeq.1998.3468. Google Scholar

[25]

M. Nakao, Energy decay for the linear and semilinear wave equations in exterior domains with some localized dissipations,, Math. Z., 238 (2001), 781. doi: 10.1007/s002090100275. Google Scholar

[26]

M. Nakao, Decay of solutions to the Cauchy problem for the Klein-Gordon equation with a localized nonlinear dissipation,, Hokkaido Math. J., 27 (1998), 245. doi: 10.14492/hokmj/1351001285. Google Scholar

[27]

K. Ono, $L^{1}$ estimates for dissipative wave equations in exterior domains,, J. Math. Anal. Appl., 333 (2007), 1079. doi: 10.1016/j.jmaa.2006.01.031. Google Scholar

[28]

R. Racke, Nonhomogeneous nonlinear damped wave equations in unbounded domains,, Math. Methods Appl. Sci., 13 (1990), 481. doi: 10.1002/mma.1670130604. Google Scholar

[29]

D. Tataru, The $X^{s,\theta }$ spaces and unique continuation for solutions to the semilinear wave equations,, Comm. P.D.E., 21 (1996), 841. doi: 10.1080/03605309608821210. Google Scholar

[30]

L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations,, Proceedings of the Royal Society of Edinburgh.Section A. Mathematics, 115 (1990), 193. doi: 10.1017/S0308210500020606. Google Scholar

[31]

E. Zuazua, Exponential decay for the semilinear wave equation with localized damping in unbounded domains,, J. Math. pures et appl., 70 (1992), 513. Google Scholar

show all references

References:
[1]

L. Aloui, S. Ibrahim and K. Nakanishi, Exponential energy decay for damped Klein-Gordon equation with nonlinearities of arbitrary growth,, Communications in Partial Differential Equations, 36 (2011), 797. doi: 10.1080/03605302.2010.534684. Google Scholar

[2]

L. Aloui and M. Khenissi, Stabilisation de l'équation des ondes dans un domaine extérieur,, Rev. Mat. Iberoamerica, 18 (2002), 1. doi: 10.4171/RMI/309. Google Scholar

[3]

J. Bae and M. Nakao, Energy decay for the wave equation with boundary and localized dissipations in exterior domains,, Math. Nachr., 278 (2005), 771. doi: 10.1002/mana.200310271. Google Scholar

[4]

A. Bchatnia and M. Daoulatli, Local energy decay for the wave equation with a nonlinear time dependent damping,, Appl. Anal., 92 (2013), 2288. doi: 10.1080/00036811.2012.734375. Google Scholar

[5]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optimization, 30 (1992), 1024. doi: 10.1137/0330055. Google Scholar

[6]

N. Burq, Mesures semi-classiques et mesures de défaut, (French) [Semiclassical measures and defect measures], Séminaire Bourbaki, 1996/97 (1997), 167. Google Scholar

[7]

N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes,, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 325 (1997), 749. doi: 10.1016/S0764-4442(97)80053-5. Google Scholar

[8]

W. Dan and Y. Shibata, On a local energy decay of solutions of a dissipative wave equation,, Funkcial. Ekvac., 38 (1995), 545. Google Scholar

[9]

M. Daoulatli, Local energy decay for the nonlinear dissipative wave equation in an exterior domain,, Port. Math., 64 (2007), 39. doi: 10.4171/PM/1775. Google Scholar

[10]

M. Daoulatli, B. Dehman and M. Khenissi, Local energy decay for the elastic system with nonlinear damping in an exterior domain,, SIAM J.Control Optim., 48 (2010), 5254. doi: 10.1137/090757332. Google Scholar

[11]

M. Daoulatli, Behaviors of the energy of solutions of the wave equation with damping and external force,, Journal of Mathematical Analysis and Applications, 389 (2012), 205. doi: 10.1016/j.jmaa.2011.11.051. Google Scholar

[12]

B. Dehman, G. Lebeau and E. Zuazua, Stabilization and control for the subcritical semilinear wave equation,, Ann. Scient. Éc. Norm. Sup., 36 (2003), 525. doi: 10.1016/S0012-9593(03)00021-1. Google Scholar

[13]

G. Francfort, An introduction to H-measures and their applications,, Variational problems in materials science, (2006), 85. doi: 10.1007/3-7643-7565-5_7. Google Scholar

[14]

P. Gérard, Microlocal defect measures,, Comm. Partial Diff. eq., 16 (1991), 1761. doi: 10.1080/03605309108820822. Google Scholar

[15]

P. Gérard and E. Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet problem,, Duke Mathematical Journal, 71 (1993), 559. doi: 10.1215/S0012-7094-93-07122-0. Google Scholar

[16]

R. Ikehata, Energy decay of solutions for the semilinear dissipative wave equations in an exterior domain,, Funkcial. Ekvac., 44 (2001), 487. Google Scholar

[17]

R. Ikehata, Fast decay of solutions for linear wave equations with dissipation localized near infinity in an exterior domain,, Journal of Differential Equations, 188 (2003), 390. doi: 10.1016/S0022-0396(02)00101-8. Google Scholar

[18]

R. Ikehata and T. Matsuyama, L2-behaviour of solutions to the linear heat and wave equations in exterior domains,, Sci. Math. Japon., 55 (2002), 33. Google Scholar

[19]

R. Joly and L. Camille, Stabilization for the semilinear wave equation with geometric control condition,, Anal. PDE, 6 (2013), 1089. doi: 10.2140/apde.2013.6.1089. Google Scholar

[20]

S. Kawashima, M. Nakao and K. Ono, On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term,, J. Math. Soc. Jpn., 47 (1995), 617. doi: 10.2969/jmsj/04740617. Google Scholar

[21]

M. Khenissi, Équation des ondes amorties dans un domaine extérieur,, Bull. Soc. Math. France, 131 (2003), 211. Google Scholar

[22]

P. D. Lax and R. S. Phillips, Scattering Theory,, Pure and Applied Mathematics, (1989). Google Scholar

[23]

G. Lebeau, Equation des ondes amorties,, In Algebraic and geometric methods in mathematical physics, 19 (1996), 73. Google Scholar

[24]

M. Nakao, Stabilization of local energy in an exterior domain for the wave equation with a localized dissipation,, J. Diff. Eq., 148 (1998), 388. doi: 10.1006/jdeq.1998.3468. Google Scholar

[25]

M. Nakao, Energy decay for the linear and semilinear wave equations in exterior domains with some localized dissipations,, Math. Z., 238 (2001), 781. doi: 10.1007/s002090100275. Google Scholar

[26]

M. Nakao, Decay of solutions to the Cauchy problem for the Klein-Gordon equation with a localized nonlinear dissipation,, Hokkaido Math. J., 27 (1998), 245. doi: 10.14492/hokmj/1351001285. Google Scholar

[27]

K. Ono, $L^{1}$ estimates for dissipative wave equations in exterior domains,, J. Math. Anal. Appl., 333 (2007), 1079. doi: 10.1016/j.jmaa.2006.01.031. Google Scholar

[28]

R. Racke, Nonhomogeneous nonlinear damped wave equations in unbounded domains,, Math. Methods Appl. Sci., 13 (1990), 481. doi: 10.1002/mma.1670130604. Google Scholar

[29]

D. Tataru, The $X^{s,\theta }$ spaces and unique continuation for solutions to the semilinear wave equations,, Comm. P.D.E., 21 (1996), 841. doi: 10.1080/03605309608821210. Google Scholar

[30]

L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations,, Proceedings of the Royal Society of Edinburgh.Section A. Mathematics, 115 (1990), 193. doi: 10.1017/S0308210500020606. Google Scholar

[31]

E. Zuazua, Exponential decay for the semilinear wave equation with localized damping in unbounded domains,, J. Math. pures et appl., 70 (1992), 513. Google Scholar

[1]

Abdelaziz Soufyane, Belkacem Said-Houari. The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system. Evolution Equations & Control Theory, 2014, 3 (4) : 713-738. doi: 10.3934/eect.2014.3.713

[2]

Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control & Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251

[3]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[4]

Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations & Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021

[5]

Moez Daoulatli. Rates of decay for the wave systems with time dependent damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 407-443. doi: 10.3934/dcds.2011.31.407

[6]

Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, Irena Lasiecka, Flávio A. Falcão Nascimento. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1987-2011. doi: 10.3934/dcdsb.2014.19.1987

[7]

Mohammed Aassila. On energy decay rate for linear damped systems. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 851-864. doi: 10.3934/dcds.2002.8.851

[8]

Kazuhiro Ishige, Michinori Ishiwata. Global solutions for a semilinear heat equation in the exterior domain of a compact set. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 847-865. doi: 10.3934/dcds.2012.32.847

[9]

Takeshi Taniguchi. The existence and decay estimates of the solutions to $3$D stochastic Navier-Stokes equations with additive noise in an exterior domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4323-4341. doi: 10.3934/dcds.2014.34.4323

[10]

Ryo Ikehata, Shingo Kitazaki. Optimal energy decay rates for some wave equations with double damping terms. Evolution Equations & Control Theory, 2019, 8 (4) : 825-846. doi: 10.3934/eect.2019040

[11]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure & Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[12]

Kim Dang Phung. Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1057-1093. doi: 10.3934/dcds.2008.20.1057

[13]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

[14]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations & Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[15]

Xue Yang, Xinglong Wu. Wave breaking and persistent decay of solution to a shallow water wave equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2149-2165. doi: 10.3934/dcdss.2016089

[16]

Louis Tebou. Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Mathematical Control & Related Fields, 2012, 2 (1) : 45-60. doi: 10.3934/mcrf.2012.2.45

[17]

Jing Zhang. The analyticity and exponential decay of a Stokes-wave coupling system with viscoelastic damping in the variational framework. Evolution Equations & Control Theory, 2017, 6 (1) : 135-154. doi: 10.3934/eect.2017008

[18]

Claudianor O. Alves, M. M. Cavalcanti, Valeria N. Domingos Cavalcanti, Mohammad A. Rammaha, Daniel Toundykov. On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 583-608. doi: 10.3934/dcdss.2009.2.583

[19]

Nicolas Fourrier, Irena Lasiecka. Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions. Evolution Equations & Control Theory, 2013, 2 (4) : 631-667. doi: 10.3934/eect.2013.2.631

[20]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]