• Previous Article
    A note on global well-posedness and blow-up of some semilinear evolution equations
  • EECT Home
  • This Issue
  • Next Article
    Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition
September  2015, 4(3): 347-353. doi: 10.3934/eect.2015.4.347

A backward uniqueness result for the wave equation with absorbing boundary conditions

1. 

Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123

Received  February 2015 Revised  June 2015 Published  September 2015

We consider the wave equation $u_{tt}=\Delta u$ on a bounded domain $\Omega\subset{\mathbb R}^n$, $n>1$, with smooth boundary of positive mean curvature. On the boundary, we impose the absorbing boundary condition ${\partial u\over\partial\nu}+u_t=0$. We prove uniqueness of solutions backward in time.
Citation: Michael Renardy. A backward uniqueness result for the wave equation with absorbing boundary conditions. Evolution Equations & Control Theory, 2015, 4 (3) : 347-353. doi: 10.3934/eect.2015.4.347
References:
[1]

G. Avalos and T. Clark, Backward uniqueness for a PDE fluid-structure interaction,, preprint, (). Google Scholar

[2]

G. Avalos and R. Triggiani, Backward uniqueness of the s.c. semigroup arising in parabolic-hyperbolic fluid-structure interaction,, J. Diff. Eq., 245 (2008), 737. doi: 10.1016/j.jde.2007.10.036. Google Scholar

[3]

G. Avalos and R. Triggiani, Backwards uniqueness of the $C_0$-semigroup associated with a parabolic-hyperbolic Stokes-Lamé partial differential equation system,, Trans. Amer. Math. Soc., 362 (2010), 3535. doi: 10.1090/S0002-9947-10-04851-8. Google Scholar

[4]

I. Lasiecka, M. Renardy and R. Triggiani, Backward uniqueness for thermoelastic plates with rotational forces,, Semigroup Forum, 62 (2001), 217. doi: 10.1007/s002330010035. Google Scholar

[5]

M. Renardy, Backward uniqueness for linearized compressible flow,, Evol. Eqns. Control Th., 4 (2015), 107. doi: 10.3934/eect.2015.4.107. Google Scholar

show all references

References:
[1]

G. Avalos and T. Clark, Backward uniqueness for a PDE fluid-structure interaction,, preprint, (). Google Scholar

[2]

G. Avalos and R. Triggiani, Backward uniqueness of the s.c. semigroup arising in parabolic-hyperbolic fluid-structure interaction,, J. Diff. Eq., 245 (2008), 737. doi: 10.1016/j.jde.2007.10.036. Google Scholar

[3]

G. Avalos and R. Triggiani, Backwards uniqueness of the $C_0$-semigroup associated with a parabolic-hyperbolic Stokes-Lamé partial differential equation system,, Trans. Amer. Math. Soc., 362 (2010), 3535. doi: 10.1090/S0002-9947-10-04851-8. Google Scholar

[4]

I. Lasiecka, M. Renardy and R. Triggiani, Backward uniqueness for thermoelastic plates with rotational forces,, Semigroup Forum, 62 (2001), 217. doi: 10.1007/s002330010035. Google Scholar

[5]

M. Renardy, Backward uniqueness for linearized compressible flow,, Evol. Eqns. Control Th., 4 (2015), 107. doi: 10.3934/eect.2015.4.107. Google Scholar

[1]

Jacek Banasiak, Marcin Moszyński. Hypercyclicity and chaoticity spaces of $C_0$ semigroups. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 577-587. doi: 10.3934/dcds.2008.20.577

[2]

José A. Conejero, Alfredo Peris. Hypercyclic translation $C_0$-semigroups on complex sectors. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1195-1208. doi: 10.3934/dcds.2009.25.1195

[3]

Igor Shevchenko, Barbara Kaltenbacher. Absorbing boundary conditions for the Westervelt equation. Conference Publications, 2015, 2015 (special) : 1000-1008. doi: 10.3934/proc.2015.1000

[4]

Yu-Xia Liang, Ze-Hua Zhou. Supercyclic translation $C_0$-semigroup on complex sectors. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 361-370. doi: 10.3934/dcds.2016.36.361

[5]

Seppo Granlund, Niko Marola. Phragmén--Lindelöf theorem for infinity harmonic functions. Communications on Pure & Applied Analysis, 2015, 14 (1) : 127-132. doi: 10.3934/cpaa.2015.14.127

[6]

Robert Denk, Yoshihiro Shibata. Generation of semigroups for the thermoelastic plate equation with free boundary conditions. Evolution Equations & Control Theory, 2019, 8 (2) : 301-313. doi: 10.3934/eect.2019016

[7]

Jiří Neustupa. On $L^2$-Boundedness of a $C_0$-Semigroup generated by the perturbed oseen-type operator arising from flow around a rotating body. Conference Publications, 2007, 2007 (Special) : 758-767. doi: 10.3934/proc.2007.2007.758

[8]

M. Carme Leseduarte, Ramon Quintanilla. Phragmén-Lindelöf alternative for an exact heat conduction equation with delay. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1221-1235. doi: 10.3934/cpaa.2013.12.1221

[9]

Vesselin Petkov. Location of eigenvalues for the wave equation with dissipative boundary conditions. Inverse Problems & Imaging, 2016, 10 (4) : 1111-1139. doi: 10.3934/ipi.2016034

[10]

Renato Manfrin. On the boundedness of solutions of the equation $u''+(1+f(t))u=0$. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 991-1008. doi: 10.3934/dcds.2009.23.991

[11]

Hugo Beirão da Veiga. A challenging open problem: The inviscid limit under slip-type boundary conditions.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 231-236. doi: 10.3934/dcdss.2010.3.231

[12]

José M. Arrieta, Simone M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 327-351. doi: 10.3934/dcdsb.2010.14.327

[13]

Nicolas Fourrier, Irena Lasiecka. Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions. Evolution Equations & Control Theory, 2013, 2 (4) : 631-667. doi: 10.3934/eect.2013.2.631

[14]

Guanggan Chen, Jian Zhang. Asymptotic behavior for a stochastic wave equation with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1441-1453. doi: 10.3934/dcdsb.2012.17.1441

[15]

Arnaud Heibig, Mohand Moussaoui. Exact controllability of the wave equation for domains with slits and for mixed boundary conditions. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 367-386. doi: 10.3934/dcds.1996.2.367

[16]

Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603

[17]

Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001

[18]

Nikolai Dokuchaev. On forward and backward SPDEs with non-local boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5335-5351. doi: 10.3934/dcds.2015.35.5335

[19]

Mohammad Akil, Ali Wehbe. Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions. Mathematical Control & Related Fields, 2019, 9 (1) : 97-116. doi: 10.3934/mcrf.2019005

[20]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1047-1069. doi: 10.3934/dcds.2008.21.1047

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]