June  2015, 4(2): 205-220. doi: 10.3934/eect.2015.4.205

Finite rank distributed control for the resistive diffusion equation using damping assignment

1. 

LCIS Laboratoire de Conception et d'Intégration des Systèmes, Grenoble Alpes University, F-26902, France, France

Received  May 2014 Revised  October 2014 Published  May 2015

A first extension of the IDA-PBC control synthesis to infinite dimensional port Hamiltonian systems is investigated, using the same idea as for the finite dimensional case, that is transform the original model into a closed loop target Hamiltonian model using feedback control. To achieve this goal both finite rank distributed control and boundary control are used. The proposed class of considered port Hamiltonian distributed parameters systems is first defined. Then the matching equation is derived for this class before considering the particular case of damping assignment on the resistive diffusion example, for the radial diffusion of the poloidal magnetic flux in tokamak reactors.
Citation: Ngoc Minh Trang Vu, Laurent Lefèvre. Finite rank distributed control for the resistive diffusion equation using damping assignment. Evolution Equations & Control Theory, 2015, 4 (2) : 205-220. doi: 10.3934/eect.2015.4.205
References:
[1]

M. Becherif and E. Mendes, Stability and robustness of disturbed-port controlled hamiltonian systems with dissipation,, in Proceedings of the 16th IFAC World Congress (Praha, (2005).

[2]

J. Blum, Numerical Simulation and Optimal Control in Plasma Physics,, Gauthier-Villars, (1989).

[3]

J. Bucalossi, A. Argouarch, V. Basiuk, et al., Feasibility study of an actively cooled tungsten divertor in tore supra for iter technology testing,, Fusion Engineering and Design, 86 (2011), 684. doi: 10.1016/j.fusengdes.2011.01.114.

[4]

B. Jacob and H. Zwart, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces,, Operator Theory: Advances and Applications, (2012). doi: 10.1007/978-3-0348-0399-1.

[5]

Y. Le Gorrec, H. Zwart and B. M. Maschke, Dirac structures and boundary control systems associated with skew-symmetric differential operators,, SIAM J. of Control and Optimization, 44 (2005), 1864. doi: 10.1137/040611677.

[6]

A. Macchelli, Boundary energy shaping of linear distributed Port-Hamiltonian systems,, European Journal of Control, 19 (2013), 521. doi: 10.1016/j.ejcon.2013.10.002.

[7]

A. Macchelli, A. J. van der Schaft and C. Melchiorri, Port Hamiltonian formulation of infinite dimensional systems. I. Modeling,, Proc. 50th IEEE Conference on Decisions and Control (CDC04), (2004), 3762. doi: 10.1109/CDC.2004.1429324.

[8]

_________, Port Hamiltonian formulation of infinite dimensional systems. II. Boundary control by interconnection,, in 43rd IEEE Conference on Decisions and Control (CDC04), (2004).

[9]

R. Ortega, A. J. van der Schaft, B. Maschke and G. Escobar, Interconnection and damping assignment: Passivity-based control of port-controlled Hamiltonian systems,, Automatica, 38 (2002), 585. doi: 10.1016/S0005-1098(01)00278-3.

[10]

R. Ortega and E. Garcia-Canseco, Interconnection and damping assignement passivit-based control: A survey,, European Journal of Control, 10 (2004), 432. doi: 10.3166/ejc.10.432-450.

[11]

M. Schöberl and A. Siuka, On casimir functionals for field fheories in port-hamiltonian description for control purposes,, in 50nd IEEE Conference on Decision and Control, (2011).

[12]

G. E. Swaters, Introduction to Hamiltonian Fluid Dynamics and Stability Theory,, Chapman & Hal/CRC, (2000).

[13]

A. J. van der Schaft and B. M. Maschke, Hamiltonian formulation of distributed parameter systems with boundary energy flow,, J. of Geometry and Physics, 42 (2002), 166. doi: 10.1016/S0393-0440(01)00083-3.

[14]

J. Villegas, H. Zwart, Y. Le Gorrec and B. M. Maschke, Stability and stabilization of a class of boundary control systems,, IEEE Transaction On Automatic Control, 54 (2009), 142. doi: 10.1109/TAC.2008.2007176.

[15]

J. A. Villegas, H. Zwart, Y. Le Gorrec, B. Maschke and A. J. van der Schaft, Stability and stabilization of a class of boundary control systems,, in Proc. 44th IEEE Conference on Decision and Control and European Control Conference ECC 2005 (Seville, (2005), 3850. doi: 10.1109/CDC.2005.1582762.

[16]

J. A. Villegas, Y. Le Gorrec, H. Zwart and B. Maschke, Boundary control for a class of dissipative differential operators including diffusion systems,, in Proc. 7th International Symposium on Mathematical Theory of Networks and Systems (Kyoto, (2006), 297.

[17]

T. N. M. Vu, L. Lefèvre and B. Maschke, Port-hamiltonian formulation for systems of conservation laws: application to plasma dynamics in tokamak reactors,, in 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control, (2012).

[18]

T. N. M. Vu, L. Lefèvre, R. Nouailletas and S. Brémond, Geometric discretization for a plasma control model,, in IFAC Joint conference: 5th Symposium on System Structure and Control, ().

[19]

________, An ida-pbc approach for the control of 1d plasma profile in tokamaks,, in 52nd IEEE Conference on Decision and Control, (2013).

[20]

T. N. M. Vu, R. Nouailletas, L. Lefèvre, S. Brémond and F. Felici, Ida-pbc control for the coupled plasma poloidal magnetic flux and heat radial diffusion equations in tokamaks,, in 19th World Congress of the International Federation of Automatic Control, (2014).

[21]

J. Wesson, Tokamaks,, Third edition, (2004).

[22]

E. Witrant, E. Joffrin, S. Brémond, G. Giruzzi, D. Mazon, O. Barana and P. Moreau, A control-oriented model of the current profile on tokamak plasma,, Plasma Physics and Controlled Fusion, 49 (2007), 1075. doi: 10.1088/0741-3335/49/7/009.

show all references

References:
[1]

M. Becherif and E. Mendes, Stability and robustness of disturbed-port controlled hamiltonian systems with dissipation,, in Proceedings of the 16th IFAC World Congress (Praha, (2005).

[2]

J. Blum, Numerical Simulation and Optimal Control in Plasma Physics,, Gauthier-Villars, (1989).

[3]

J. Bucalossi, A. Argouarch, V. Basiuk, et al., Feasibility study of an actively cooled tungsten divertor in tore supra for iter technology testing,, Fusion Engineering and Design, 86 (2011), 684. doi: 10.1016/j.fusengdes.2011.01.114.

[4]

B. Jacob and H. Zwart, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces,, Operator Theory: Advances and Applications, (2012). doi: 10.1007/978-3-0348-0399-1.

[5]

Y. Le Gorrec, H. Zwart and B. M. Maschke, Dirac structures and boundary control systems associated with skew-symmetric differential operators,, SIAM J. of Control and Optimization, 44 (2005), 1864. doi: 10.1137/040611677.

[6]

A. Macchelli, Boundary energy shaping of linear distributed Port-Hamiltonian systems,, European Journal of Control, 19 (2013), 521. doi: 10.1016/j.ejcon.2013.10.002.

[7]

A. Macchelli, A. J. van der Schaft and C. Melchiorri, Port Hamiltonian formulation of infinite dimensional systems. I. Modeling,, Proc. 50th IEEE Conference on Decisions and Control (CDC04), (2004), 3762. doi: 10.1109/CDC.2004.1429324.

[8]

_________, Port Hamiltonian formulation of infinite dimensional systems. II. Boundary control by interconnection,, in 43rd IEEE Conference on Decisions and Control (CDC04), (2004).

[9]

R. Ortega, A. J. van der Schaft, B. Maschke and G. Escobar, Interconnection and damping assignment: Passivity-based control of port-controlled Hamiltonian systems,, Automatica, 38 (2002), 585. doi: 10.1016/S0005-1098(01)00278-3.

[10]

R. Ortega and E. Garcia-Canseco, Interconnection and damping assignement passivit-based control: A survey,, European Journal of Control, 10 (2004), 432. doi: 10.3166/ejc.10.432-450.

[11]

M. Schöberl and A. Siuka, On casimir functionals for field fheories in port-hamiltonian description for control purposes,, in 50nd IEEE Conference on Decision and Control, (2011).

[12]

G. E. Swaters, Introduction to Hamiltonian Fluid Dynamics and Stability Theory,, Chapman & Hal/CRC, (2000).

[13]

A. J. van der Schaft and B. M. Maschke, Hamiltonian formulation of distributed parameter systems with boundary energy flow,, J. of Geometry and Physics, 42 (2002), 166. doi: 10.1016/S0393-0440(01)00083-3.

[14]

J. Villegas, H. Zwart, Y. Le Gorrec and B. M. Maschke, Stability and stabilization of a class of boundary control systems,, IEEE Transaction On Automatic Control, 54 (2009), 142. doi: 10.1109/TAC.2008.2007176.

[15]

J. A. Villegas, H. Zwart, Y. Le Gorrec, B. Maschke and A. J. van der Schaft, Stability and stabilization of a class of boundary control systems,, in Proc. 44th IEEE Conference on Decision and Control and European Control Conference ECC 2005 (Seville, (2005), 3850. doi: 10.1109/CDC.2005.1582762.

[16]

J. A. Villegas, Y. Le Gorrec, H. Zwart and B. Maschke, Boundary control for a class of dissipative differential operators including diffusion systems,, in Proc. 7th International Symposium on Mathematical Theory of Networks and Systems (Kyoto, (2006), 297.

[17]

T. N. M. Vu, L. Lefèvre and B. Maschke, Port-hamiltonian formulation for systems of conservation laws: application to plasma dynamics in tokamak reactors,, in 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control, (2012).

[18]

T. N. M. Vu, L. Lefèvre, R. Nouailletas and S. Brémond, Geometric discretization for a plasma control model,, in IFAC Joint conference: 5th Symposium on System Structure and Control, ().

[19]

________, An ida-pbc approach for the control of 1d plasma profile in tokamaks,, in 52nd IEEE Conference on Decision and Control, (2013).

[20]

T. N. M. Vu, R. Nouailletas, L. Lefèvre, S. Brémond and F. Felici, Ida-pbc control for the coupled plasma poloidal magnetic flux and heat radial diffusion equations in tokamaks,, in 19th World Congress of the International Federation of Automatic Control, (2014).

[21]

J. Wesson, Tokamaks,, Third edition, (2004).

[22]

E. Witrant, E. Joffrin, S. Brémond, G. Giruzzi, D. Mazon, O. Barana and P. Moreau, A control-oriented model of the current profile on tokamak plasma,, Plasma Physics and Controlled Fusion, 49 (2007), 1075. doi: 10.1088/0741-3335/49/7/009.

[1]

Evelyn Lunasin, Edriss S. Titi. Finite determining parameters feedback control for distributed nonlinear dissipative systems -a computational study. Evolution Equations & Control Theory, 2017, 6 (4) : 535-557. doi: 10.3934/eect.2017027

[2]

Edward Hooton, Pavel Kravetc, Dmitrii Rachinskii, Qingwen Hu. Selective Pyragas control of Hamiltonian systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2019-2034. doi: 10.3934/dcdss.2019130

[3]

Getachew K. Befekadu, Eduardo L. Pasiliao. On the hierarchical optimal control of a chain of distributed systems. Journal of Dynamics & Games, 2015, 2 (2) : 187-199. doi: 10.3934/jdg.2015.2.187

[4]

Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207

[5]

Abderrahim Azouani, Edriss S. Titi. Feedback control of nonlinear dissipative systems by finite determining parameters - A reaction-diffusion paradigm. Evolution Equations & Control Theory, 2014, 3 (4) : 579-594. doi: 10.3934/eect.2014.3.579

[6]

Simone Göttlich, Patrick Schindler. Optimal inflow control of production systems with finite buffers. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 107-127. doi: 10.3934/dcdsb.2015.20.107

[7]

Gildas Besançon, Didier Georges, Zohra Benayache. Towards nonlinear delay-based control for convection-like distributed systems: The example of water flow control in open channel systems. Networks & Heterogeneous Media, 2009, 4 (2) : 211-221. doi: 10.3934/nhm.2009.4.211

[8]

Tomás Caraballo Garrido, Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero, Michael Zgurovsky. Preface to the special issue "Dynamics and control in distributed systems: Dedicated to the memory of Valery S. Melnik (1952-2007)". Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : ⅰ-ⅴ. doi: 10.3934/dcdsb.20193i

[9]

Zhiyong Sun, Toshiharu Sugie. Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 297-318. doi: 10.3934/naco.2019020

[10]

Rudy R. Negenborn, Peter-Jules van Overloop, Tamás Keviczky, Bart De Schutter. Distributed model predictive control of irrigation canals. Networks & Heterogeneous Media, 2009, 4 (2) : 359-380. doi: 10.3934/nhm.2009.4.359

[11]

Dale McDonald. Sensitivity based trajectory following control damping methods. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 127-143. doi: 10.3934/naco.2013.3.127

[12]

Andrew D. Lewis. Linearisation of tautological control systems. Journal of Geometric Mechanics, 2016, 8 (1) : 99-138. doi: 10.3934/jgm.2016.8.99

[13]

Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929

[14]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[15]

Victor Ayala, Adriano Da Silva, Luiz A. B. San Martin. Control systems on flag manifolds and their chain control sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2301-2313. doi: 10.3934/dcds.2017101

[16]

M. Ángeles Rodríguez-Bellido, Diego A. Rueda-Gómez, Élder J. Villamizar-Roa. On a distributed control problem for a coupled chemotaxis-fluid model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 557-571. doi: 10.3934/dcdsb.2017208

[17]

Ernest Fontich, Pau Martín. Arnold diffusion in perturbations of analytic integrable Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 61-84. doi: 10.3934/dcds.2001.7.61

[18]

Pasquale Palumbo, Pierdomenico Pepe, Simona Panunzi, Andrea De Gaetano. Robust closed-loop control of plasma glycemia: A discrete-delay model approach. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 455-468. doi: 10.3934/dcdsb.2009.12.455

[19]

Eduardo Casas, Mariano Mateos, Arnd Rösch. Finite element approximation of sparse parabolic control problems. Mathematical Control & Related Fields, 2017, 7 (3) : 393-417. doi: 10.3934/mcrf.2017014

[20]

Sorin Micu, Jaime H. Ortega, Lionel Rosier, Bing-Yu Zhang. Control and stabilization of a family of Boussinesq systems. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 273-313. doi: 10.3934/dcds.2009.24.273

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]