June  2015, 4(2): 143-158. doi: 10.3934/eect.2015.4.143

Input/state invariant LQ-optimal control: Application to competitive coexistence in a chemostat

1. 

CENAERO, Bâtiment Eole, 29 rue des Frères Wright, 6041 Gosselies, Belgium

2. 

University of Namur, naXys and Department of Mathematics, 8 Rempart de la Vierge, B-5000 Namur, Belgium

3. 

Université Catholique de Louvain, INMA-ICTEAM, CESAME, 4-6 avenue G. Lemaitre, 1348 Louvain-la-Neuve, Belgium

Received  July 2014 Revised  December 2014 Published  May 2015

This paper is devoted to the application of the input/state-invariant linear quadratic (LQ) problem in order to solve the problem of coexistence of species in competition in a chemostat. The methodology that is used has for objective to guarantee the local positive input/state-invariance of the nonlinear system which describes the chemostat model by ensuring the input/state-invariance of its linear approximation around an equilibrium. This is achieved by applying an appropriate LQ-optimal control to the system, following two different approaches, namely a receding horizon method and an inverse problem approach.
Citation: Charlotte Beauthier, Joseph J. Winkin, Denis Dochain. Input/state invariant LQ-optimal control: Application to competitive coexistence in a chemostat. Evolution Equations & Control Theory, 2015, 4 (2) : 143-158. doi: 10.3934/eect.2015.4.143
References:
[1]

E. Barany, M. Ballyk and H. Noussi, Stabilization of chemostats using feedback linearization,, in Proceedings of the 46th IEEE Conference on Decision and Control, (2007). Google Scholar

[2]

Ch. Beauthier, The LQ-Optimal Control Problem for Invariant Linear Systems,, PhD thesis, (2011). Google Scholar

[3]

Ch. Beauthier and J. J. Winkin, Input/state-invariant LQ-optimal control,, in preparation, (2014). Google Scholar

[4]

R. E. Bixby, Implementation of the simplex method: The initial basis,, ORSA Journal on Computing, 4 (1992), 267. doi: 10.1287/ijoc.4.3.267. Google Scholar

[5]

S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory,, Society for Industrial and Applied Mathematics, (1994). doi: 10.1137/1.9781611970777. Google Scholar

[6]

G. J. Butler, S. B. Hsu and P. Waltman, A mathematical model of the chemostat with periodic washout rate,, SIAM Journal on Applied Mathematics, 45 (1985), 435. doi: 10.1137/0145025. Google Scholar

[7]

G. J. Butler and G. S. K. Wolkowicz, A mathematical model of the chemostat with a general class of functions describing nutrient uptake,, SIAM Journal on applied mathematics, 45 (1985), 138. doi: 10.1137/0145006. Google Scholar

[8]

V. Chellaboina, S. Bhat, W. M. Haddad and D. S. Bernstein, Modeling and analysis of mass-action kinetics,, IEEE Control Systems Magazine, 29 (2009), 60. doi: 10.1109/MCS.2009.932926. Google Scholar

[9]

P. De Leenheer, D. Angeli and E. D. Sontag, Crowding effects promote coexistence in the chemostat,, J. Math. Anal. Appl., 319 (2006), 48. doi: 10.1016/j.jmaa.2006.02.036. Google Scholar

[10]

P. De Leenheer and S. S. Pilyugin, Feedback-mediated oscillatory coexistence in the chemostat,, Lecture Notes in Control and Information Sciences, 341 (2006), 97. doi: 10.1007/3-540-34774-7_13. Google Scholar

[11]

P. De Leenheer and H. Smith, Feedback control for a chemostat with two organisms,, in Cédérom Proceedings of the Symposium on Mathematical Theory of Networks and Systems (MTNS), (2002). Google Scholar

[12]

P. De Leenheer and H. Smith, Feedback control for chemostat models,, Journal of Mathematical Biology, 46 (2003), 48. doi: 10.1007/s00285-002-0170-x. Google Scholar

[13]

S. B. Hsu, A competition model for a seasonally fluctuating nutrient,, J. Math. Biol., 9 (1980), 115. doi: 10.1007/BF00275917. Google Scholar

[14]

G. E. Hutchinson, The paradox of the plankton,, The American Naturalist, 95 (1961), 137. doi: 10.1086/282171. Google Scholar

[15]

M. Ikeda and D. D. Siljak, Optimality and robustness of linear quadratic control for nonlinear systems,, Automatica, 26 (1990), 499. doi: 10.1016/0005-1098(90)90021-9. Google Scholar

[16]

T. Kačzorek, Locally positive nonlinear systems,, Int. J. Appl. Math. Comput. Sci., 13 (2003), 505. Google Scholar

[17]

W. S. Keeran, P. De Leenheer and S. S. Pilyugin, Feedback-mediated coexistence and oscillations in the chemostat,, DCDS - B, 9 (2008), 321. Google Scholar

[18]

H. K. Khalil, Nonlinear Systems,, Third edition, (2002). Google Scholar

[19]

C. Lobry and J. Harmand, A new hypothesis to explain the coexistence of $n$ species in the presence of a single resource,, C. R. Biologies, 329 (2006), 40. doi: 10.1016/j.crvi.2005.10.004. Google Scholar

[20]

J. Löfberg, http://users.isy.liu.se/johanl/yalmip/,, Last updated on February 08, (2011). Google Scholar

[21]

S. Losseau, Coexistence Dans un Modèle de Chemostat Par Feedback Linéarisant,, Master's thesis, (2012). Google Scholar

[22]

F. Mazenc and M. Malisoff, Remarks on output feedback stabilization of two-species chemostat models,, Automatica, 46 (2010), 1739. doi: 10.1016/j.automatica.2010.06.035. Google Scholar

[23]

N. S. Rao and E. O. Roxin, Controlled growth of competing species,, SIAM J. Appl. Math., 50 (1990), 853. doi: 10.1137/0150049. Google Scholar

[24]

A. Rapaport, D. Dochain and J. Harmand, Long run coexistence in the chemostat with multiple species,, Journal of Theoritical Biology, 257 (2009), 252. doi: 10.1016/j.jtbi.2008.11.015. Google Scholar

[25]

A. Rapaport, J. Harmand and F. Mazenc, Coexistence in the design of a series of two chemostats,, Nonlinear Analysis: Real World Applications, 9 (2008), 1052. doi: 10.1016/j.nonrwa.2007.02.003. Google Scholar

[26]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, American Mathematical Society, (1995). Google Scholar

[27]

H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition,, Cambridge Studies in Mathematical Biology, (1995). doi: 10.1017/CBO9780511530043. Google Scholar

[28]

G. Stephanopoulos, A. G. Fredrickson and R. Asis, The growth of competing microbial populations in CSTR with periodically varying inputs,, Amer. Instit. Chem. Eng. J., 25 (1979), 863. doi: 10.1002/aic.690250515. Google Scholar

[29]

J. G. VanAntwerp and R. D. Braatz, A tutorial on linear and bilinear matrix inequalities,, Journal of Process Control, 10 (2000), 363. doi: 10.1016/S0959-1524(99)00056-6. Google Scholar

show all references

References:
[1]

E. Barany, M. Ballyk and H. Noussi, Stabilization of chemostats using feedback linearization,, in Proceedings of the 46th IEEE Conference on Decision and Control, (2007). Google Scholar

[2]

Ch. Beauthier, The LQ-Optimal Control Problem for Invariant Linear Systems,, PhD thesis, (2011). Google Scholar

[3]

Ch. Beauthier and J. J. Winkin, Input/state-invariant LQ-optimal control,, in preparation, (2014). Google Scholar

[4]

R. E. Bixby, Implementation of the simplex method: The initial basis,, ORSA Journal on Computing, 4 (1992), 267. doi: 10.1287/ijoc.4.3.267. Google Scholar

[5]

S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory,, Society for Industrial and Applied Mathematics, (1994). doi: 10.1137/1.9781611970777. Google Scholar

[6]

G. J. Butler, S. B. Hsu and P. Waltman, A mathematical model of the chemostat with periodic washout rate,, SIAM Journal on Applied Mathematics, 45 (1985), 435. doi: 10.1137/0145025. Google Scholar

[7]

G. J. Butler and G. S. K. Wolkowicz, A mathematical model of the chemostat with a general class of functions describing nutrient uptake,, SIAM Journal on applied mathematics, 45 (1985), 138. doi: 10.1137/0145006. Google Scholar

[8]

V. Chellaboina, S. Bhat, W. M. Haddad and D. S. Bernstein, Modeling and analysis of mass-action kinetics,, IEEE Control Systems Magazine, 29 (2009), 60. doi: 10.1109/MCS.2009.932926. Google Scholar

[9]

P. De Leenheer, D. Angeli and E. D. Sontag, Crowding effects promote coexistence in the chemostat,, J. Math. Anal. Appl., 319 (2006), 48. doi: 10.1016/j.jmaa.2006.02.036. Google Scholar

[10]

P. De Leenheer and S. S. Pilyugin, Feedback-mediated oscillatory coexistence in the chemostat,, Lecture Notes in Control and Information Sciences, 341 (2006), 97. doi: 10.1007/3-540-34774-7_13. Google Scholar

[11]

P. De Leenheer and H. Smith, Feedback control for a chemostat with two organisms,, in Cédérom Proceedings of the Symposium on Mathematical Theory of Networks and Systems (MTNS), (2002). Google Scholar

[12]

P. De Leenheer and H. Smith, Feedback control for chemostat models,, Journal of Mathematical Biology, 46 (2003), 48. doi: 10.1007/s00285-002-0170-x. Google Scholar

[13]

S. B. Hsu, A competition model for a seasonally fluctuating nutrient,, J. Math. Biol., 9 (1980), 115. doi: 10.1007/BF00275917. Google Scholar

[14]

G. E. Hutchinson, The paradox of the plankton,, The American Naturalist, 95 (1961), 137. doi: 10.1086/282171. Google Scholar

[15]

M. Ikeda and D. D. Siljak, Optimality and robustness of linear quadratic control for nonlinear systems,, Automatica, 26 (1990), 499. doi: 10.1016/0005-1098(90)90021-9. Google Scholar

[16]

T. Kačzorek, Locally positive nonlinear systems,, Int. J. Appl. Math. Comput. Sci., 13 (2003), 505. Google Scholar

[17]

W. S. Keeran, P. De Leenheer and S. S. Pilyugin, Feedback-mediated coexistence and oscillations in the chemostat,, DCDS - B, 9 (2008), 321. Google Scholar

[18]

H. K. Khalil, Nonlinear Systems,, Third edition, (2002). Google Scholar

[19]

C. Lobry and J. Harmand, A new hypothesis to explain the coexistence of $n$ species in the presence of a single resource,, C. R. Biologies, 329 (2006), 40. doi: 10.1016/j.crvi.2005.10.004. Google Scholar

[20]

J. Löfberg, http://users.isy.liu.se/johanl/yalmip/,, Last updated on February 08, (2011). Google Scholar

[21]

S. Losseau, Coexistence Dans un Modèle de Chemostat Par Feedback Linéarisant,, Master's thesis, (2012). Google Scholar

[22]

F. Mazenc and M. Malisoff, Remarks on output feedback stabilization of two-species chemostat models,, Automatica, 46 (2010), 1739. doi: 10.1016/j.automatica.2010.06.035. Google Scholar

[23]

N. S. Rao and E. O. Roxin, Controlled growth of competing species,, SIAM J. Appl. Math., 50 (1990), 853. doi: 10.1137/0150049. Google Scholar

[24]

A. Rapaport, D. Dochain and J. Harmand, Long run coexistence in the chemostat with multiple species,, Journal of Theoritical Biology, 257 (2009), 252. doi: 10.1016/j.jtbi.2008.11.015. Google Scholar

[25]

A. Rapaport, J. Harmand and F. Mazenc, Coexistence in the design of a series of two chemostats,, Nonlinear Analysis: Real World Applications, 9 (2008), 1052. doi: 10.1016/j.nonrwa.2007.02.003. Google Scholar

[26]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, American Mathematical Society, (1995). Google Scholar

[27]

H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition,, Cambridge Studies in Mathematical Biology, (1995). doi: 10.1017/CBO9780511530043. Google Scholar

[28]

G. Stephanopoulos, A. G. Fredrickson and R. Asis, The growth of competing microbial populations in CSTR with periodically varying inputs,, Amer. Instit. Chem. Eng. J., 25 (1979), 863. doi: 10.1002/aic.690250515. Google Scholar

[29]

J. G. VanAntwerp and R. D. Braatz, A tutorial on linear and bilinear matrix inequalities,, Journal of Process Control, 10 (2000), 363. doi: 10.1016/S0959-1524(99)00056-6. Google Scholar

[1]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[2]

Maria do Rosário de Pinho, Ilya Shvartsman. Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 505-522. doi: 10.3934/dcds.2011.29.505

[3]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[4]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[5]

Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579

[6]

Jiongmin Yong. A deterministic linear quadratic time-inconsistent optimal control problem. Mathematical Control & Related Fields, 2011, 1 (1) : 83-118. doi: 10.3934/mcrf.2011.1.83

[7]

IvÁn Area, FaÏÇal NdaÏrou, Juan J. Nieto, Cristiana J. Silva, Delfim F. M. Torres. Ebola model and optimal control with vaccination constraints. Journal of Industrial & Management Optimization, 2018, 14 (2) : 427-446. doi: 10.3934/jimo.2017054

[8]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553

[9]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control & Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[10]

Georg Vossen, Torsten Hermanns. On an optimal control problem in laser cutting with mixed finite-/infinite-dimensional constraints. Journal of Industrial & Management Optimization, 2014, 10 (2) : 503-519. doi: 10.3934/jimo.2014.10.503

[11]

Jan-Hendrik Webert, Philip E. Gill, Sven-Joachim Kimmerle, Matthias Gerdts. A study of structure-exploiting SQP algorithms for an optimal control problem with coupled hyperbolic and ordinary differential equation constraints. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1259-1282. doi: 10.3934/dcdss.2018071

[12]

Piernicola Bettiol, Hélène Frankowska. Lipschitz regularity of solution map of control systems with multiple state constraints. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 1-26. doi: 10.3934/dcds.2012.32.1

[13]

Shigeaki Koike, Hiroaki Morimoto, Shigeru Sakaguchi. A linear-quadratic control problem with discretionary stopping. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 261-277. doi: 10.3934/dcdsb.2007.8.261

[14]

Piermarco Cannarsa, Hélène Frankowska, Elsa M. Marchini. On Bolza optimal control problems with constraints. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 629-653. doi: 10.3934/dcdsb.2009.11.629

[15]

James P. Nelson, Mark J. Balas. Direct model reference adaptive control of linear systems with input/output delays. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 445-462. doi: 10.3934/naco.2013.3.445

[16]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[17]

Tijana Levajković, Hermann Mena, Amjad Tuffaha. The stochastic linear quadratic optimal control problem in Hilbert spaces: A polynomial chaos approach. Evolution Equations & Control Theory, 2016, 5 (1) : 105-134. doi: 10.3934/eect.2016.5.105

[18]

Matthias Gerdts, Martin Kunkel. A nonsmooth Newton's method for discretized optimal control problems with state and control constraints. Journal of Industrial & Management Optimization, 2008, 4 (2) : 247-270. doi: 10.3934/jimo.2008.4.247

[19]

M. Arisawa, P.-L. Lions. Continuity of admissible trajectories for state constraints control problems. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 297-305. doi: 10.3934/dcds.1996.2.297

[20]

Andrei V. Dmitruk, Alexander M. Kaganovich. Quadratic order conditions for an extended weak minimum in optimal control problems with intermediate and mixed constraints. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 523-545. doi: 10.3934/dcds.2011.29.523

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

[Back to Top]