December  2014, 3(4): 595-626. doi: 10.3934/eect.2014.3.595

Relaxation of regularity for the Westervelt equation by nonlinear damping with applications in acoustic-acoustic and elastic-acoustic coupling

1. 

Institut für Mathematik, Universität Klagenfurt, Universitätsstraße 65-67, 9020 Klagenfurt am Wörthersee

2. 

Department of Mathematics, University of Nebraska-Lincoln, Avery Hall 239, Lincoln, NE 68588

Received  December 2013 Revised  March 2014 Published  October 2014

In this paper we show local (and partially global) in time existence for the Westervelt equation with several versions of nonlinear damping. This enables us to prove well-posedness with spatially varying $L_\infty$-coefficients, which includes the situation of interface coupling between linear and nonlinear acoustics as well as between linear elasticity and nonlinear acoustics, as relevant, e.g., in high intensity focused ultrasound (HIFU) applications.
Citation: Rainer Brunnhuber, Barbara Kaltenbacher, Petronela Radu. Relaxation of regularity for the Westervelt equation by nonlinear damping with applications in acoustic-acoustic and elastic-acoustic coupling. Evolution Equations & Control Theory, 2014, 3 (4) : 595-626. doi: 10.3934/eect.2014.3.595
References:
[1]

O. V. Abramov, High-Intensity Ultrasonics,, Gordon and Breach Science Publishers, (1998). Google Scholar

[2]

A. Bamberger, R. Glowinski and Q. H. Tran, A domain decomposition method for the acoustic wave equation with discontinuous coefficients and grid change,, SIAM Journal on Numerical Analysis, 34 (1997), 603. doi: 10.1137/S0036142994261518. Google Scholar

[3]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces,, Editura Academiei, (1976). Google Scholar

[4]

A. Bermudez, R. Rodriguez and D. Santamarina, Finite element approximation of a displacement formulation for time-domain elastoacoustic vibrations,, Journal of Computational and Applied Mathematics, 152 (2003), 17. doi: 10.1016/S0377-0427(02)00694-5. Google Scholar

[5]

A. C. Biazutti, On a nonlinear evolution equation and its applications,, Nonlinear Analysis, 24 (1995), 1221. doi: 10.1016/0362-546X(94)00193-L. Google Scholar

[6]

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods,, Springer, (1991). doi: 10.1007/978-1-4612-3172-1. Google Scholar

[7]

J. C. Clements, On the existence and uniqueness of solutions of the equation $u_{t t}-\partial \sigma _i(u_{x_i}) / {\partial x_i} - D_Nu_t=f$,, Canadian Mathematical Bulletin, 18 (1975), 181. doi: 10.4153/CMB-1975-036-1. Google Scholar

[8]

L. C. Evans, Partial Differential Equations,, American Mathematical Society, (1998). Google Scholar

[9]

B. Flemisch, M. Kaltenbacher and B. I. Wohlmuth, Elasto-acoustic and acoustic-acoustic coupling on nonmatching grids,, International Journal of Numerical Methods in Engineering, 67 (2006), 1791. doi: 10.1002/nme.1669. Google Scholar

[10]

M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics,, Academic Press, (1997). Google Scholar

[11]

B. Kaltenbacher, Boundary observability and stabilization for Westervelt type wave equations without interior damping,, Applied Mathematics and Optimization, 62 (2010), 381. doi: 10.1007/s00245-010-9108-7. Google Scholar

[12]

B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation,, Discrete and Continuous Dynamical Systems Series S, 2 (2009), 503. doi: 10.3934/dcdss.2009.2.503. Google Scholar

[13]

B. Kaltenbacher, I. Lasiecka and S. Veljović, Well-posedness and exponential decay for the Westervelt equation with inhomogeneous Dirichlet boundary data,, J. Escher et. al. (Eds): Progress in Nonlinear Differential Equations and Their Applications, 80 (2011), 357. doi: 10.1007/978-3-0348-0075-4_19. Google Scholar

[14]

G. Leoni, A First Course in Sobolev Spaces,, American Mathematical Society, (2009). Google Scholar

[15]

B. Kaltenbacher and I. Lasiecka, Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions,, Discrete Contin. Dyn. Syst., II (2011), 763. Google Scholar

[16]

M. Kaltenbacher, Numerical Simulations of Mechatronic Sensors and Actuators,, Springer, (2004). doi: 10.1007/978-3-662-05358-4. Google Scholar

[17]

A. Raviart and J. M. Thomas, Primal hybrid finite element method for second order elliptic equations,, Mathematics of Computation, 31 (1977), 391. Google Scholar

[18]

M. A. Rammaha and Z. Wilstein, Hadamard well-posedness for wave equations with $p$-Laplacian damping and supercritical sources,, Advances in Differential Equations, 17 (2012), 105. Google Scholar

[19]

G. Teschl, Ordinary Differential Equations and Dynamical Systems,, American Mathematical Society, (2012). Google Scholar

[20]

P. J. Westervelt, Parametric acoustic array,, The Journal of the Acoustic Society of America, 35 (1963), 535. doi: 10.1121/1.1918525. Google Scholar

show all references

References:
[1]

O. V. Abramov, High-Intensity Ultrasonics,, Gordon and Breach Science Publishers, (1998). Google Scholar

[2]

A. Bamberger, R. Glowinski and Q. H. Tran, A domain decomposition method for the acoustic wave equation with discontinuous coefficients and grid change,, SIAM Journal on Numerical Analysis, 34 (1997), 603. doi: 10.1137/S0036142994261518. Google Scholar

[3]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces,, Editura Academiei, (1976). Google Scholar

[4]

A. Bermudez, R. Rodriguez and D. Santamarina, Finite element approximation of a displacement formulation for time-domain elastoacoustic vibrations,, Journal of Computational and Applied Mathematics, 152 (2003), 17. doi: 10.1016/S0377-0427(02)00694-5. Google Scholar

[5]

A. C. Biazutti, On a nonlinear evolution equation and its applications,, Nonlinear Analysis, 24 (1995), 1221. doi: 10.1016/0362-546X(94)00193-L. Google Scholar

[6]

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods,, Springer, (1991). doi: 10.1007/978-1-4612-3172-1. Google Scholar

[7]

J. C. Clements, On the existence and uniqueness of solutions of the equation $u_{t t}-\partial \sigma _i(u_{x_i}) / {\partial x_i} - D_Nu_t=f$,, Canadian Mathematical Bulletin, 18 (1975), 181. doi: 10.4153/CMB-1975-036-1. Google Scholar

[8]

L. C. Evans, Partial Differential Equations,, American Mathematical Society, (1998). Google Scholar

[9]

B. Flemisch, M. Kaltenbacher and B. I. Wohlmuth, Elasto-acoustic and acoustic-acoustic coupling on nonmatching grids,, International Journal of Numerical Methods in Engineering, 67 (2006), 1791. doi: 10.1002/nme.1669. Google Scholar

[10]

M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics,, Academic Press, (1997). Google Scholar

[11]

B. Kaltenbacher, Boundary observability and stabilization for Westervelt type wave equations without interior damping,, Applied Mathematics and Optimization, 62 (2010), 381. doi: 10.1007/s00245-010-9108-7. Google Scholar

[12]

B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation,, Discrete and Continuous Dynamical Systems Series S, 2 (2009), 503. doi: 10.3934/dcdss.2009.2.503. Google Scholar

[13]

B. Kaltenbacher, I. Lasiecka and S. Veljović, Well-posedness and exponential decay for the Westervelt equation with inhomogeneous Dirichlet boundary data,, J. Escher et. al. (Eds): Progress in Nonlinear Differential Equations and Their Applications, 80 (2011), 357. doi: 10.1007/978-3-0348-0075-4_19. Google Scholar

[14]

G. Leoni, A First Course in Sobolev Spaces,, American Mathematical Society, (2009). Google Scholar

[15]

B. Kaltenbacher and I. Lasiecka, Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions,, Discrete Contin. Dyn. Syst., II (2011), 763. Google Scholar

[16]

M. Kaltenbacher, Numerical Simulations of Mechatronic Sensors and Actuators,, Springer, (2004). doi: 10.1007/978-3-662-05358-4. Google Scholar

[17]

A. Raviart and J. M. Thomas, Primal hybrid finite element method for second order elliptic equations,, Mathematics of Computation, 31 (1977), 391. Google Scholar

[18]

M. A. Rammaha and Z. Wilstein, Hadamard well-posedness for wave equations with $p$-Laplacian damping and supercritical sources,, Advances in Differential Equations, 17 (2012), 105. Google Scholar

[19]

G. Teschl, Ordinary Differential Equations and Dynamical Systems,, American Mathematical Society, (2012). Google Scholar

[20]

P. J. Westervelt, Parametric acoustic array,, The Journal of the Acoustic Society of America, 35 (1963), 535. doi: 10.1121/1.1918525. Google Scholar

[1]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[2]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure & Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[3]

Belkacem Said-Houari, Flávio A. Falcão Nascimento. Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction. Communications on Pure & Applied Analysis, 2013, 12 (1) : 375-403. doi: 10.3934/cpaa.2013.12.375

[4]

Barbara Kaltenbacher. Mathematics of nonlinear acoustics. Evolution Equations & Control Theory, 2015, 4 (4) : 447-491. doi: 10.3934/eect.2015.4.447

[5]

Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control & Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251

[6]

Tae Gab Ha. On viscoelastic wave equation with nonlinear boundary damping and source term. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1543-1576. doi: 10.3934/cpaa.2010.9.1543

[7]

Brenton LeMesurier. Modeling thermal effects on nonlinear wave motion in biopolymers by a stochastic discrete nonlinear Schrödinger equation with phase damping. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 317-327. doi: 10.3934/dcdss.2008.1.317

[8]

Claudianor O. Alves, M. M. Cavalcanti, Valeria N. Domingos Cavalcanti, Mohammad A. Rammaha, Daniel Toundykov. On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 583-608. doi: 10.3934/dcdss.2009.2.583

[9]

Daniela Giachetti, Maria Michaela Porzio. Global existence for nonlinear parabolic equations with a damping term. Communications on Pure & Applied Analysis, 2009, 8 (3) : 923-953. doi: 10.3934/cpaa.2009.8.923

[10]

Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 459-509. doi: 10.3934/dcds.2008.20.459

[11]

Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001

[12]

Tai-Chia Lin. Vortices for the nonlinear wave equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 391-398. doi: 10.3934/dcds.1999.5.391

[13]

Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377

[14]

Genni Fragnelli, Dimitri Mugnai. Stability of solutions for nonlinear wave equations with a positive--negative damping. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 615-622. doi: 10.3934/dcdss.2011.4.615

[15]

Fengjuan Meng, Meihua Yang, Chengkui Zhong. Attractors for wave equations with nonlinear damping on time-dependent space. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 205-225. doi: 10.3934/dcdsb.2016.21.205

[16]

A. Kh. Khanmamedov. Long-time behaviour of wave equations with nonlinear interior damping. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1185-1198. doi: 10.3934/dcds.2008.21.1185

[17]

Q-Heung Choi, Tacksun Jung. A nonlinear wave equation with jumping nonlinearity. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 797-802. doi: 10.3934/dcds.2000.6.797

[18]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

[19]

Jorge A. Esquivel-Avila. Qualitative analysis of a nonlinear wave equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 787-804. doi: 10.3934/dcds.2004.10.787

[20]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (6)

[Back to Top]