September  2014, 3(3): 399-410. doi: 10.3934/eect.2014.3.399

Heat conduction with memory: A singular kernel problem

1. 

Dipartimento di Scienze di Base e Applicate, per l'Ingegneria - Sezione Matematica, Sapienza Università di Roma, Rome, Italy

2. 

Istituto per le Applicazioni del Calcolo M. Picone, C.N.R. Consiglio Nazionale delle Ricerche, Rome, Italy

Received  May 2013 Revised  February 2014 Published  August 2014

The existence and uniqueness of solution to an integro-differential problem arising in heat conduction with memory is here considered. Specifically, a singular kernel problem is analyzed in the case of a multi-dimensional rigid heat conductor. The choice to investigate a singular kernel material is suggested by applications to model a wider variety of materials and, in particular, new materials whose heat flux relaxation function may be superiorly unbounded at the initial time $t=0$. The present study represents a generalization to higher dimensions of a previous one concerning a $1$-dimensional problem in the framework of linear viscoelasticity with memory. Specifically, an existence theorem is here proved when initial homogeneous data are assumed. Indeed, the choice of homogeneous data is needed to obtain the a priori estimate in Section 2 on which the subsequent results, are based.
Citation: Sandra Carillo, Vanda Valente, Giorgio Vergara Caffarelli. Heat conduction with memory: A singular kernel problem. Evolution Equations & Control Theory, 2014, 3 (3) : 399-410. doi: 10.3934/eect.2014.3.399
References:
[1]

G. Amendola and S. Carillo, Thermal work and minimum free energy in a heat conductor with memory,, Quart. J. of Mech. and Appl. Math., 57 (2004), 429. doi: 10.1093/qjmam/57.3.429. Google Scholar

[2]

G. Amendola, M. Fabrizio and J. M. Golden, Thermodynamics of Materials with Memory. Theory and Applications,, Springer, (2012). doi: 10.1007/978-1-4614-1692-0. Google Scholar

[3]

S. Carillo, V. Valente and G. Vergara Caffarelli, A result of existence and uniqueness for an integro-differential system in magneto-viscoelasticity,, Applicable Analisys: An International Journal, 90 (2011), 1563. doi: 10.1080/00036811003735832. Google Scholar

[4]

S. Carillo, V. Valente and G. Vergara Caffarelli, An existence theorem for the magnetic-viscoelastic problem,, Discrete and Continuous Dynamical Systems Series S., 5 (2012), 435. doi: 10.3934/dcdss.2012.5.435. Google Scholar

[5]

S. Carillo, V. Valente and G. Vergara Caffarelli, A linear viscoelasticity problem with a singular memory kernel: an existence and uniqueness result,, Differential and Integral Equations, 26 (2013), 1115. doi: http://projecteuclid.org/euclid.die/1372858565. Google Scholar

[6]

S. Carillo, M. Chipot, V. Valente and G. Vergara Caffarelli, in preparation,, (2014)., (2014). Google Scholar

[7]

S. Carillo, Some remarks on materials with memory: heat conduction and viscoelasticity,, Journal of Nonlinear Mathematical Physics Supplement 1, 12 (2005), 163. doi: 10.2991/jnmp.2005.12.s1.14. Google Scholar

[8]

S. Carillo, Evolution problems in materials with fading memory,, Matematiche (Catania), 62 (2007), 93. doi: http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/30/29. Google Scholar

[9]

S. Carillo, An evolution problem in materials with fading memory: Solution's existence and uniqueness,, Complex Variables and Elliptic Equations An International Journal, 56 (2011), 481. doi: 10.1080/17476931003786667. Google Scholar

[10]

S. Carillo, Materials with mMemory: Free energies & solutions' exponential decay,, Commun. Pure Appl. Anal., 9 (2010), 1235. doi: 10.3934/cpaa.2010.9.1235. Google Scholar

[11]

C. Cattaneo, Sulla conduzione del calore,, Atti Sem. Mat. Fis. Universitá Modena, 3 (1948), 83. Google Scholar

[12]

V. V. Chepyzhov, E. Mainini and V. Pata, Stability of abstract linear semigroups arising from heat conduction with memory,, Asymptotic Analysis, 50 (2006), 269. Google Scholar

[13]

M. Chipot, I. Shafrir, V. Valente and G. Vergara Caffarelli, A nonlocal problem arising in the study of magneto-elastic interactions,, Boll. UMI Serie IX, I (2008), 197. Google Scholar

[14]

M. Chipot, I. Shafrir, V. Valente and G. Vergara Caffarelli, On a hyperbolic-parabolic system arising in magneto-elasticity,, J. Math. Anal. Appl., 352 (2009), 120. doi: 10.1016/j.jmaa.2008.04.013. Google Scholar

[15]

B. D. Coleman, Thermodynamics of materials with memory,, Arch. Rat. Mech. Anal., 17 (1964), 1. doi: 10.1007/BF00283864. Google Scholar

[16]

B. D. Coleman and E. H. Dill, On thermodynamics and stability of materials with memory,, Arch. Rat. Mech. Anal., 51 (1973), 1. doi: 10.1007/BF00275991. Google Scholar

[17]

C. M. Dafermos, An abstract Volterra equation with applications to linear viscoelasticity,, J. Diff. Equations, 7 (1970), 554. doi: 10.1016/0022-0396(70)90101-4. Google Scholar

[18]

C. M. Dafermos, Asymptotic stability in viscoelasticity,, Arch. Rat. Mech. Anal., 37 (1970), 297. doi: 10.1007/BF00251609. Google Scholar

[19]

M. Fabrizio, G. Gentili and D. W. Reynolds, On rigid heat conductors with memory,, Int. J. Eng. Sci., 36 (1998), 765. doi: 10.1016/S0020-7225(97)00123-7. Google Scholar

[20]

M. Fabrizio, B. Lazzari and A. Morro, Mathematical Models and Methods for Smart Materials,, Series on Advances in Mathematics for Applied Sciences, (2002). doi: 10.1142/5162. Google Scholar

[21]

C. Giorgi and G. Gentili, Thermodynamic properties and stability for the heat flux equation with linear memory,, Quart. Appl. Math., 51 (1993), 343. Google Scholar

[22]

C. Giorgi and V. Pata, Asymptotic behavior of a nonlinear hyperbolic heat equation with memory,, Nonlinear Differential Equations and Applications, 8 (2001), 157. doi: 10.1007/PL00001443. Google Scholar

[23]

M. Grasselli and A. Lorenzi, Abstract nonlinear Volterra integro-differential equations with nonsmooth kernels,, Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2 (1991), 43. Google Scholar

[24]

M. E. Gurtin, Modern Continuum Thermodynamics,, Mechanics Today, 1 (1972), 168. Google Scholar

[25]

M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds,, Arch. Rat. Mech. Anal., 31 (1968), 113. doi: 10.1007/BF00281373. Google Scholar

[26]

J. Janno and L. von Wolfersdorf, Identification of weakly singular memory kernels in viscoelasticity,, ZAMM Z. Angew. Math. Mech., 78 (1998), 391. doi: 10.1002/(SICI)1521-4001(199806)78:6<391::AID-ZAMM391>3.3.CO;2-A. Google Scholar

[27]

J. Janno and L. von Wolfersdorf, Identification of weakly singular memory kernels in heat conduction,, Z. Angew. Math. Mech., 77 (1997), 243. doi: 10.1002/zamm.19970770403. Google Scholar

[28]

M. McCarthy, Constitutive equations for thermomechanical materials with memory,, Int. J. Eng. Sci., 8 (1970), 467. doi: 10.1016/0020-7225(70)90023-6. Google Scholar

[29]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. An Introduction to Mathematical Models,, Imperial College Press, (2010). doi: 10.1142/9781848163300. Google Scholar

[30]

E. Mainini and G. Mola, Exponential and polynomial decay for first order linear Volterra evolution equations,, Quart. Appl. Math., 67 (2009), 93. Google Scholar

[31]

B. Miara, G. Stavroulakis and V. Valente, Topics on Mathematics for Smart Systems,, World Scientific Publishing Co. Pte. Ltd., (2007). Google Scholar

[32]

R. K. Miller and A. Feldstein, Smoothness of solutions of Volterra integral equations with weakly singular kernels,, SIAM J. Math. Anal., 2 (1971), 242. doi: 10.1137/0502022. Google Scholar

[33]

N.-E. Tatar, Exponential decay for a viscoelastic problem with a singular kernel,, Zeitschrift fur Angewandte Mathematik und Physik, 60 (2009), 640. doi: 10.1007/s00033-008-8030-1. Google Scholar

[34]

V. Valente and G. Vergara Caffarelli, On the dynamics of magneto-elastic interactions: Existence of solutions and limit behavior,, Asymptotic Analysis, 51 (2007), 319. Google Scholar

[35]

G. Vergara Caffarelli, Dissipativity and uniqueness for the one-dimensional dynamical problem of linear viscoelasticity,, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 82 (1990), 483. Google Scholar

[36]

G. Vergara Caffarelli, Dissipativity and existence for the one-dimensional dynamical problem of linear viscoelasticity,, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 82 (1988), 489. Google Scholar

[37]

S. T. Wu, Exponential decay for a nonlinear viscoelastic equation with singular kernels,, Acta. Mathematica Scientia, 32 (2012), 2237. doi: 10.1016/S0252-9602(12)60173-8. Google Scholar

show all references

References:
[1]

G. Amendola and S. Carillo, Thermal work and minimum free energy in a heat conductor with memory,, Quart. J. of Mech. and Appl. Math., 57 (2004), 429. doi: 10.1093/qjmam/57.3.429. Google Scholar

[2]

G. Amendola, M. Fabrizio and J. M. Golden, Thermodynamics of Materials with Memory. Theory and Applications,, Springer, (2012). doi: 10.1007/978-1-4614-1692-0. Google Scholar

[3]

S. Carillo, V. Valente and G. Vergara Caffarelli, A result of existence and uniqueness for an integro-differential system in magneto-viscoelasticity,, Applicable Analisys: An International Journal, 90 (2011), 1563. doi: 10.1080/00036811003735832. Google Scholar

[4]

S. Carillo, V. Valente and G. Vergara Caffarelli, An existence theorem for the magnetic-viscoelastic problem,, Discrete and Continuous Dynamical Systems Series S., 5 (2012), 435. doi: 10.3934/dcdss.2012.5.435. Google Scholar

[5]

S. Carillo, V. Valente and G. Vergara Caffarelli, A linear viscoelasticity problem with a singular memory kernel: an existence and uniqueness result,, Differential and Integral Equations, 26 (2013), 1115. doi: http://projecteuclid.org/euclid.die/1372858565. Google Scholar

[6]

S. Carillo, M. Chipot, V. Valente and G. Vergara Caffarelli, in preparation,, (2014)., (2014). Google Scholar

[7]

S. Carillo, Some remarks on materials with memory: heat conduction and viscoelasticity,, Journal of Nonlinear Mathematical Physics Supplement 1, 12 (2005), 163. doi: 10.2991/jnmp.2005.12.s1.14. Google Scholar

[8]

S. Carillo, Evolution problems in materials with fading memory,, Matematiche (Catania), 62 (2007), 93. doi: http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/30/29. Google Scholar

[9]

S. Carillo, An evolution problem in materials with fading memory: Solution's existence and uniqueness,, Complex Variables and Elliptic Equations An International Journal, 56 (2011), 481. doi: 10.1080/17476931003786667. Google Scholar

[10]

S. Carillo, Materials with mMemory: Free energies & solutions' exponential decay,, Commun. Pure Appl. Anal., 9 (2010), 1235. doi: 10.3934/cpaa.2010.9.1235. Google Scholar

[11]

C. Cattaneo, Sulla conduzione del calore,, Atti Sem. Mat. Fis. Universitá Modena, 3 (1948), 83. Google Scholar

[12]

V. V. Chepyzhov, E. Mainini and V. Pata, Stability of abstract linear semigroups arising from heat conduction with memory,, Asymptotic Analysis, 50 (2006), 269. Google Scholar

[13]

M. Chipot, I. Shafrir, V. Valente and G. Vergara Caffarelli, A nonlocal problem arising in the study of magneto-elastic interactions,, Boll. UMI Serie IX, I (2008), 197. Google Scholar

[14]

M. Chipot, I. Shafrir, V. Valente and G. Vergara Caffarelli, On a hyperbolic-parabolic system arising in magneto-elasticity,, J. Math. Anal. Appl., 352 (2009), 120. doi: 10.1016/j.jmaa.2008.04.013. Google Scholar

[15]

B. D. Coleman, Thermodynamics of materials with memory,, Arch. Rat. Mech. Anal., 17 (1964), 1. doi: 10.1007/BF00283864. Google Scholar

[16]

B. D. Coleman and E. H. Dill, On thermodynamics and stability of materials with memory,, Arch. Rat. Mech. Anal., 51 (1973), 1. doi: 10.1007/BF00275991. Google Scholar

[17]

C. M. Dafermos, An abstract Volterra equation with applications to linear viscoelasticity,, J. Diff. Equations, 7 (1970), 554. doi: 10.1016/0022-0396(70)90101-4. Google Scholar

[18]

C. M. Dafermos, Asymptotic stability in viscoelasticity,, Arch. Rat. Mech. Anal., 37 (1970), 297. doi: 10.1007/BF00251609. Google Scholar

[19]

M. Fabrizio, G. Gentili and D. W. Reynolds, On rigid heat conductors with memory,, Int. J. Eng. Sci., 36 (1998), 765. doi: 10.1016/S0020-7225(97)00123-7. Google Scholar

[20]

M. Fabrizio, B. Lazzari and A. Morro, Mathematical Models and Methods for Smart Materials,, Series on Advances in Mathematics for Applied Sciences, (2002). doi: 10.1142/5162. Google Scholar

[21]

C. Giorgi and G. Gentili, Thermodynamic properties and stability for the heat flux equation with linear memory,, Quart. Appl. Math., 51 (1993), 343. Google Scholar

[22]

C. Giorgi and V. Pata, Asymptotic behavior of a nonlinear hyperbolic heat equation with memory,, Nonlinear Differential Equations and Applications, 8 (2001), 157. doi: 10.1007/PL00001443. Google Scholar

[23]

M. Grasselli and A. Lorenzi, Abstract nonlinear Volterra integro-differential equations with nonsmooth kernels,, Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2 (1991), 43. Google Scholar

[24]

M. E. Gurtin, Modern Continuum Thermodynamics,, Mechanics Today, 1 (1972), 168. Google Scholar

[25]

M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds,, Arch. Rat. Mech. Anal., 31 (1968), 113. doi: 10.1007/BF00281373. Google Scholar

[26]

J. Janno and L. von Wolfersdorf, Identification of weakly singular memory kernels in viscoelasticity,, ZAMM Z. Angew. Math. Mech., 78 (1998), 391. doi: 10.1002/(SICI)1521-4001(199806)78:6<391::AID-ZAMM391>3.3.CO;2-A. Google Scholar

[27]

J. Janno and L. von Wolfersdorf, Identification of weakly singular memory kernels in heat conduction,, Z. Angew. Math. Mech., 77 (1997), 243. doi: 10.1002/zamm.19970770403. Google Scholar

[28]

M. McCarthy, Constitutive equations for thermomechanical materials with memory,, Int. J. Eng. Sci., 8 (1970), 467. doi: 10.1016/0020-7225(70)90023-6. Google Scholar

[29]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. An Introduction to Mathematical Models,, Imperial College Press, (2010). doi: 10.1142/9781848163300. Google Scholar

[30]

E. Mainini and G. Mola, Exponential and polynomial decay for first order linear Volterra evolution equations,, Quart. Appl. Math., 67 (2009), 93. Google Scholar

[31]

B. Miara, G. Stavroulakis and V. Valente, Topics on Mathematics for Smart Systems,, World Scientific Publishing Co. Pte. Ltd., (2007). Google Scholar

[32]

R. K. Miller and A. Feldstein, Smoothness of solutions of Volterra integral equations with weakly singular kernels,, SIAM J. Math. Anal., 2 (1971), 242. doi: 10.1137/0502022. Google Scholar

[33]

N.-E. Tatar, Exponential decay for a viscoelastic problem with a singular kernel,, Zeitschrift fur Angewandte Mathematik und Physik, 60 (2009), 640. doi: 10.1007/s00033-008-8030-1. Google Scholar

[34]

V. Valente and G. Vergara Caffarelli, On the dynamics of magneto-elastic interactions: Existence of solutions and limit behavior,, Asymptotic Analysis, 51 (2007), 319. Google Scholar

[35]

G. Vergara Caffarelli, Dissipativity and uniqueness for the one-dimensional dynamical problem of linear viscoelasticity,, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 82 (1990), 483. Google Scholar

[36]

G. Vergara Caffarelli, Dissipativity and existence for the one-dimensional dynamical problem of linear viscoelasticity,, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 82 (1988), 489. Google Scholar

[37]

S. T. Wu, Exponential decay for a nonlinear viscoelastic equation with singular kernels,, Acta. Mathematica Scientia, 32 (2012), 2237. doi: 10.1016/S0252-9602(12)60173-8. Google Scholar

[1]

Tomás Caraballo, I. D. Chueshov, Pedro Marín-Rubio, José Real. Existence and asymptotic behaviour for stochastic heat equations with multiplicative noise in materials with memory. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 253-270. doi: 10.3934/dcds.2007.18.253

[2]

Tomás Caraballo, José Real, I. D. Chueshov. Pullback attractors for stochastic heat equations in materials with memory. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 525-539. doi: 10.3934/dcdsb.2008.9.525

[3]

Sandra Carillo. Materials with memory: Free energies & solution exponential decay. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1235-1248. doi: 10.3934/cpaa.2010.9.1235

[4]

Corrado Mascia. Stability analysis for linear heat conduction with memory kernels described by Gamma functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3569-3584. doi: 10.3934/dcds.2015.35.3569

[5]

John Murrough Golden. Constructing free energies for materials with memory. Evolution Equations & Control Theory, 2014, 3 (3) : 447-483. doi: 10.3934/eect.2014.3.447

[6]

Sergei A. Avdonin, Sergei A. Ivanov, Jun-Min Wang. Inverse problems for the heat equation with memory. Inverse Problems & Imaging, 2019, 13 (1) : 31-38. doi: 10.3934/ipi.2019002

[7]

Yueling Li, Yingchao Xie, Xicheng Zhang. Large deviation principle for stochastic heat equation with memory. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5221-5237. doi: 10.3934/dcds.2015.35.5221

[8]

Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations & Control Theory, 2014, 3 (1) : 35-58. doi: 10.3934/eect.2014.3.35

[9]

Daniele Davino, Ciro Visone. Rate-independent memory in magneto-elastic materials. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 649-691. doi: 10.3934/dcdss.2015.8.649

[10]

Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. A rate-independent model for permanent inelastic effects in shape memory materials. Networks & Heterogeneous Media, 2011, 6 (1) : 145-165. doi: 10.3934/nhm.2011.6.145

[11]

Stanisław Migórski, Anna Ochal, Mircea Sofonea. Analysis of a frictional contact problem for viscoelastic materials with long memory. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 687-705. doi: 10.3934/dcdsb.2011.15.687

[12]

Toyohiko Aiki. On the existence of a weak solution to a free boundary problem for a model of a shape memory alloy spring. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 1-13. doi: 10.3934/dcdss.2012.5.1

[13]

Xueke Pu, Boling Guo. Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction. Kinetic & Related Models, 2016, 9 (1) : 165-191. doi: 10.3934/krm.2016.9.165

[14]

Zhiqiang Yang, Junzhi Cui, Qiang Ma. The second-order two-scale computation for integrated heat transfer problem with conduction, convection and radiation in periodic porous materials. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 827-848. doi: 10.3934/dcdsb.2014.19.827

[15]

Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147

[16]

Shuji Yoshikawa, Irena Pawłow, Wojciech M. Zajączkowski. A quasilinear thermoviscoelastic system for shape memory alloys with temperature dependent specific heat. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1093-1115. doi: 10.3934/cpaa.2009.8.1093

[17]

Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden. Minimum free energy in the frequency domain for a heat conductor with memory. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 793-816. doi: 10.3934/dcdsb.2010.14.793

[18]

Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden, Adele Manes. Energy stability for thermo-viscous fluids with a fading memory heat flux. Evolution Equations & Control Theory, 2015, 4 (3) : 265-279. doi: 10.3934/eect.2015.4.265

[19]

Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 745-759. doi: 10.3934/dcdss.2011.4.745

[20]

Michela Eleuteri, Luca Lussardi. Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evolution Equations & Control Theory, 2014, 3 (3) : 411-427. doi: 10.3934/eect.2014.3.411

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (7)

[Back to Top]