• Previous Article
    Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions
  • EECT Home
  • This Issue
  • Next Article
    Uniqueness and Hölder type stability of continuation for the linear thermoelasticity system with residual stress
December  2013, 2(4): 669-677. doi: 10.3934/eect.2013.2.669

Control of blow-up singularities for nonlinear wave equations

1. 

Laboratoire de Mathématiques, Université de Reims Champagne-Ardenne, Moulin de la Housse, B.P. 1039, F-51687 Reims Cedex 2, France

Received  October 2012 Revised  August 2013 Published  November 2013

While the global boundary control of nonlinear wave equations that exhibit blow-up is generally impossible, we show on a typical example, motivated by laser breakdown, that it is possible to control solutions with small data so that they blow up on a prescribed compact set bounded away from the boundary of the domain. This is achieved using the representation of singular solutions with prescribed blow-up surface given by Fuchsian reduction. We outline on this example simple methods that may be of wider applicability.
Citation: Satyanad Kichenassamy. Control of blow-up singularities for nonlinear wave equations. Evolution Equations & Control Theory, 2013, 2 (4) : 669-677. doi: 10.3934/eect.2013.2.669
References:
[1]

C. Bardos, Distributed control and observation,, in Control of fluid flow, 330 (2006), 139. doi: 10.1007/978-3-540-36085-8_6. Google Scholar

[2]

G. Cabart, Singularités en Optique Non Linéaire: Etude Mathématique,, Thèse de Doctorat, (). Google Scholar

[3]

G. Cabart and S. Kichenassamy, Explosion et normes $L^p$ pour l'équation des ondes non linéaire cubique,, C. R. Acad. Sci. Paris, 335 (2002), 903. doi: 10.1016/S1631-073X(02)02606-7. Google Scholar

[4]

W. C. Chewning, Controllability of the nonlinear wave equation in several space variables,, SIAM J. Control, 14 (1976), 19. doi: 10.1137/0314002. Google Scholar

[5]

M. Cirinà, Boundary controllability of nonlinear hyperbolic systems,, SIAM J. Control, 7 (1969), 198. doi: 10.1137/0307014. Google Scholar

[6]

B. Dehman, G. Lebeau and E. Zuazua, Stabilization and control for the subcritical semilinear wave equation,, Ann. Sci. ENS, 36 (2003), 525. doi: 10.1016/S0012-9593(03)00021-1. Google Scholar

[7]

D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid,, Ann. Math., 92 (1970), 102. doi: 10.2307/1970699. Google Scholar

[8]

H. O. Fattorini, Local controllability of a nonlinear wave equation,, Mathem. Systems Theory, 9 (1975), 30. doi: 10.1007/BF01698123. Google Scholar

[9]

S. Kichenassamy, Fuchsian Reduction: Applications to Geometry, Cosmology and Mathematical Physics,, Progress in Nonlinear Differential Equations and their Applications, (2007). Google Scholar

[10]

S. Kichenassamy and W. Littman, Blow-up surfaces for nonlinear wave equations, Part I,, Commun. in P. D. E., 18 (1993), 431. doi: 10.1080/03605309308820936. Google Scholar

[11]

S. Kichenassamy and W. Littman, Blow-up surfaces for nonlinear wave equations, Part II,, Commun. in P. D. E., 18 (1993), 1869. doi: 10.1080/03605309308820997. Google Scholar

[12]

I. Lasiecka and R. Triggiani, Exact controllability of semilinear abstract systems with applications to waves and plates,, Appl. Math. Optim., 23 (1991), 109. doi: 10.1007/BF01442394. Google Scholar

[13]

I. Lasiecka and R. Triggiani, Global exact controllability of semilinear wave equations by a double compactness/uniqueness argument,, Discr. Cont. Dyn. Syst., (2005), 556. Google Scholar

[14]

J. L. Lions, Contrôlabilité exacte, perturbations et systèmes distribués, Tome 1,, Rech. Math. Appl. 8, 8 (1988). Google Scholar

[15]

W. Littman, Aspects of boundary control theory,, in Differential Equations and Mathematical Physics, 186 (1992), 201. doi: 10.1016/S0076-5392(08)63381-0. Google Scholar

[16]

W. Littman, Boundary control theory for hyperbolic and parabolic linear partial differential equations with constant coefficients,, Ann. Sc. Norm. Sup. Pisa, 5 (1978), 567. Google Scholar

[17]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions,, SIAM Review, 20 (1978), 679. doi: 10.1137/1020095. Google Scholar

[18]

D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic equations,, Studies in Appl. Math., 52 (1973), 189. Google Scholar

[19]

M. E. Taylor, Pseudodifferential Operators and Nonlinear PDE,, Birkhäuser, (1991). doi: 10.1007/978-1-4612-0431-2. Google Scholar

[20]

Y. Zhou and Z. Lei, Local exact boundary controllability for nonlinear wave equations,, SIAM J. Control Optim., 46 (2007), 1022. doi: 10.1137/060650222. Google Scholar

[21]

E. Zuazua, Exact controllability for the semilinear wave equation,, J. Math. Pures Appl., 69 (1990), 1. Google Scholar

[22]

E. Zuazua, Exact boundary controllability for the semilinear wave equation,, in Nonlinear partial differential equations and their applications, (1991), 1987. Google Scholar

[23]

E. Zuazua, Controllability and Observability of Partial Differential Equations: Some results and open problems,, in Handbook of Differential Equations: Evolutionary Differential Equations, (2006), 527. doi: 10.1016/S1874-5717(07)80010-7. Google Scholar

[24]

X. Zhang and E. Zuazua, Exact Controllability of the Semi-Linear Wave Equation,, (2010), (2010). Google Scholar

show all references

References:
[1]

C. Bardos, Distributed control and observation,, in Control of fluid flow, 330 (2006), 139. doi: 10.1007/978-3-540-36085-8_6. Google Scholar

[2]

G. Cabart, Singularités en Optique Non Linéaire: Etude Mathématique,, Thèse de Doctorat, (). Google Scholar

[3]

G. Cabart and S. Kichenassamy, Explosion et normes $L^p$ pour l'équation des ondes non linéaire cubique,, C. R. Acad. Sci. Paris, 335 (2002), 903. doi: 10.1016/S1631-073X(02)02606-7. Google Scholar

[4]

W. C. Chewning, Controllability of the nonlinear wave equation in several space variables,, SIAM J. Control, 14 (1976), 19. doi: 10.1137/0314002. Google Scholar

[5]

M. Cirinà, Boundary controllability of nonlinear hyperbolic systems,, SIAM J. Control, 7 (1969), 198. doi: 10.1137/0307014. Google Scholar

[6]

B. Dehman, G. Lebeau and E. Zuazua, Stabilization and control for the subcritical semilinear wave equation,, Ann. Sci. ENS, 36 (2003), 525. doi: 10.1016/S0012-9593(03)00021-1. Google Scholar

[7]

D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid,, Ann. Math., 92 (1970), 102. doi: 10.2307/1970699. Google Scholar

[8]

H. O. Fattorini, Local controllability of a nonlinear wave equation,, Mathem. Systems Theory, 9 (1975), 30. doi: 10.1007/BF01698123. Google Scholar

[9]

S. Kichenassamy, Fuchsian Reduction: Applications to Geometry, Cosmology and Mathematical Physics,, Progress in Nonlinear Differential Equations and their Applications, (2007). Google Scholar

[10]

S. Kichenassamy and W. Littman, Blow-up surfaces for nonlinear wave equations, Part I,, Commun. in P. D. E., 18 (1993), 431. doi: 10.1080/03605309308820936. Google Scholar

[11]

S. Kichenassamy and W. Littman, Blow-up surfaces for nonlinear wave equations, Part II,, Commun. in P. D. E., 18 (1993), 1869. doi: 10.1080/03605309308820997. Google Scholar

[12]

I. Lasiecka and R. Triggiani, Exact controllability of semilinear abstract systems with applications to waves and plates,, Appl. Math. Optim., 23 (1991), 109. doi: 10.1007/BF01442394. Google Scholar

[13]

I. Lasiecka and R. Triggiani, Global exact controllability of semilinear wave equations by a double compactness/uniqueness argument,, Discr. Cont. Dyn. Syst., (2005), 556. Google Scholar

[14]

J. L. Lions, Contrôlabilité exacte, perturbations et systèmes distribués, Tome 1,, Rech. Math. Appl. 8, 8 (1988). Google Scholar

[15]

W. Littman, Aspects of boundary control theory,, in Differential Equations and Mathematical Physics, 186 (1992), 201. doi: 10.1016/S0076-5392(08)63381-0. Google Scholar

[16]

W. Littman, Boundary control theory for hyperbolic and parabolic linear partial differential equations with constant coefficients,, Ann. Sc. Norm. Sup. Pisa, 5 (1978), 567. Google Scholar

[17]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions,, SIAM Review, 20 (1978), 679. doi: 10.1137/1020095. Google Scholar

[18]

D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic equations,, Studies in Appl. Math., 52 (1973), 189. Google Scholar

[19]

M. E. Taylor, Pseudodifferential Operators and Nonlinear PDE,, Birkhäuser, (1991). doi: 10.1007/978-1-4612-0431-2. Google Scholar

[20]

Y. Zhou and Z. Lei, Local exact boundary controllability for nonlinear wave equations,, SIAM J. Control Optim., 46 (2007), 1022. doi: 10.1137/060650222. Google Scholar

[21]

E. Zuazua, Exact controllability for the semilinear wave equation,, J. Math. Pures Appl., 69 (1990), 1. Google Scholar

[22]

E. Zuazua, Exact boundary controllability for the semilinear wave equation,, in Nonlinear partial differential equations and their applications, (1991), 1987. Google Scholar

[23]

E. Zuazua, Controllability and Observability of Partial Differential Equations: Some results and open problems,, in Handbook of Differential Equations: Evolutionary Differential Equations, (2006), 527. doi: 10.1016/S1874-5717(07)80010-7. Google Scholar

[24]

X. Zhang and E. Zuazua, Exact Controllability of the Semi-Linear Wave Equation,, (2010), (2010). Google Scholar

[1]

Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023

[2]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[3]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[4]

Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671

[5]

Mohamed-Ali Hamza, Hatem Zaag. Blow-up results for semilinear wave equations in the superconformal case. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2315-2329. doi: 10.3934/dcdsb.2013.18.2315

[6]

Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881

[7]

Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54

[8]

Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771

[9]

Filippo Gazzola, Paschalis Karageorgis. Refined blow-up results for nonlinear fourth order differential equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 677-693. doi: 10.3934/cpaa.2015.14.677

[10]

Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027

[11]

Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267

[12]

Vural Bayrak, Emil Novruzov, Ibrahim Ozkol. Local-in-space blow-up criteria for two-component nonlinear dispersive wave system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6023-6037. doi: 10.3934/dcds.2019263

[13]

Françoise Demengel, O. Goubet. Existence of boundary blow up solutions for singular or degenerate fully nonlinear equations. Communications on Pure & Applied Analysis, 2013, 12 (2) : 621-645. doi: 10.3934/cpaa.2013.12.621

[14]

Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure & Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521

[15]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

[16]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

[17]

Hiroyuki Takamura, Hiroshi Uesaka, Kyouhei Wakasa. Sharp blow-up for semilinear wave equations with non-compactly supported data. Conference Publications, 2011, 2011 (Special) : 1351-1357. doi: 10.3934/proc.2011.2011.1351

[18]

Kyouhei Wakasa. Blow-up of solutions to semilinear wave equations with non-zero initial data. Conference Publications, 2015, 2015 (special) : 1105-1114. doi: 10.3934/proc.2015.1105

[19]

Lan Qiao, Sining Zheng. Non-simultaneous blow-up for heat equations with positive-negative sources and coupled boundary flux. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1113-1129. doi: 10.3934/cpaa.2007.6.1113

[20]

Marek Fila, Hirokazu Ninomiya, Juan-Luis Vázquez. Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 63-74. doi: 10.3934/dcds.2006.14.63

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]