September  2013, 2(3): 543-556. doi: 10.3934/eect.2013.2.543

On the structural properties of an efficient feedback law

1. 

Institut de Recherche Mathématique Avancée, Université de Strasbourg, 7 rue René Descartes, 67084 Strasbourg Cédex, France

Received  February 2013 Revised  May 2013 Published  July 2013

We investigate some structural properties of an efficient feedback law that stabilize linear time-reversible systems with an arbitrarily large decay rate. After giving a short proof of the generation of a group by the closed-loop operator, we focus on the domain of the infinitesimal generator in order to illustrate the difference between a distributed control and a boundary control, the latter being technically more complex. We also give a new proof of the exponential decay of the solutions and we provide an explanation of the higher decay rate observed in some experiments.
Citation: Ambroise Vest. On the structural properties of an efficient feedback law. Evolution Equations & Control Theory, 2013, 2 (3) : 543-556. doi: 10.3934/eect.2013.2.543
References:
[1]

F. Alabau and V. Komornik, Boundary observability, controllability, and stabilization of linear elastodynamic systems,, SIAM J. Control Optim., 37 (1999), 521. doi: 10.1137/S0363012996313835. Google Scholar

[2]

A. Benabdallah and M. Lenczner, Estimation du taux de décroissance pour la solution de problèmes de stabilisation, application à la stabilisation de l'équation des ondes,, RAIRO Modél. Math. Anal. Numér., 30 (1996), 607. Google Scholar

[3]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, "Representation and Control of Infinite Dimensional Systems,", Second edition, (2007). Google Scholar

[4]

F. Bourquin, M. Joly, M. Collet and L. Ratier, An efficient feedback control algorithm for beams: Experimental investigations,, Journal of Sound and Vibration, 278 (2004), 181. doi: 10.1016/j.jsv.2003.10.053. Google Scholar

[5]

H. Brezis, "Functional Analysis, Sobolev Spaces and Partial Differential Equations,", Springer, (2011). Google Scholar

[6]

J.-S. Briffaut., "Méthodes Numériques Pour le Contrôle et la Stabilisation Rapide des Grandes Strucutures Flexibles,", PhD thesis, (1999). Google Scholar

[7]

T. Cazenave and A. Haraux, "An Introduction to Semilinear Evolution Equations,", Oxford University Press, (1998). Google Scholar

[8]

G. Chen, Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain,, J. Math. Pures Appl. 58 (1979), 58 (1979), 249. Google Scholar

[9]

K. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations,", Springer-Verlag, (2000). Google Scholar

[10]

F. Flandoli, I. Lasiecka and R. Triggiani, Algebraic Riccati equations with nonsmoothing observation arising in hyperbolic and Euler-Bernoulli boundary control problems,, Ann. Mat. Pura Appl., 153 (1988), 307. doi: 10.1007/BF01762397. Google Scholar

[11]

D. L. Kleinman, An easy way to stabilize a linear constant system,, IEEE Transactions on Automatic Control, 15 (1970). doi: 10.1109/TAC.1970.1099612. Google Scholar

[12]

V. Komornik, Rapid boundary stabilization of linear distributed systems,, SIAM J. Control Optim., 35 (1997), 1591. doi: 10.1137/S0363012996301609. Google Scholar

[13]

V. Komornik, Rapid boundary stabilization of Maxwell's equations,, in, (1998), 611. Google Scholar

[14]

V. Komornik and P. Loreti, "Fourier Series in Control Theory,", Springer-Verlag, (2005). Google Scholar

[15]

J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation,, J. Differential Equations, 50 (1983), 163. doi: 10.1016/0022-0396(83)90073-6. Google Scholar

[16]

I. Lasiecka and R. Triggiani, Regularity of hyperbolic equations under $L_{2}(0,T;L_{2}(\Gamma ))$-Dirichlet boundary terms,, Appl. Math. Optim., 10 (1983), 275. doi: 10.1007/BF01448390. Google Scholar

[17]

I. Lasiecka and R. Triggiani, Uniform exponential energy decay of wave equations in a bounded region with $L_2(0,\infty; L_2(\Gamma))$-feedback control in the Dirichlet boundary conditions,, J. Differential Equations, 66 (1987), 340. doi: 10.1016/0022-0396(87)90025-8. Google Scholar

[18]

I. Lasiecka and R.Triggiani, "Control Theory for Partial Differential Equations: Continuous and Approximation Theories, volume II, Abstract Hyperbolic-like Systems over a Finite Time Horizon,", Cambridge University Press, (2000). Google Scholar

[19]

J.-L. Lions, Exact controllability, stabilizability and perturbations for distributed systems,, SIAM Rev., 30 (1988), 1. doi: 10.1137/1030001. Google Scholar

[20]

D. L. Lukes, Stabilizability and optimal control,, Funkcial. Ekvac., 11 (1968), 39. Google Scholar

[21]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Springer-Verlag, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[22]

J. P. Quinn and D. L. Russell, Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping,, Proc. Roy. Soc. Edinburgh Sect. A, 77 (1977), 97. Google Scholar

[23]

D. L. Russell, "Mathematics of Finite-Dimensional Control Systems,", Marcel Dekker Inc., (1979). Google Scholar

[24]

M. Slemrod, A note on complete controllability and stabilizability for linear control systems in Hilbert space,, SIAM J. Control, 12 (1974), 500. doi: 10.1137/0312038. Google Scholar

[25]

A. Smyshlyaev, B.-Z. Guo and M. Krstic, Arbitrary decay rate for Euler-Bernoulli beam by backstepping boundary feedback,, IEEE Trans. Automat. Control, 54 (2009), 1134. doi: 10.1109/TAC.2009.2013038. Google Scholar

[26]

J. M. Urquiza, Rapid exponential feedback stabilization with unbounded control operators,, SIAM J. Control Optim., 43 (2005), 2233. doi: 10.1137/S0363012901388452. Google Scholar

[27]

A. Vest, Rapid stabilization in a semigroup framework,, Preprint, (). Google Scholar

[28]

H. Zwart, Invertible solutions of the Lyapunov and algebraic Riccati equation,, preprint, (). Google Scholar

show all references

References:
[1]

F. Alabau and V. Komornik, Boundary observability, controllability, and stabilization of linear elastodynamic systems,, SIAM J. Control Optim., 37 (1999), 521. doi: 10.1137/S0363012996313835. Google Scholar

[2]

A. Benabdallah and M. Lenczner, Estimation du taux de décroissance pour la solution de problèmes de stabilisation, application à la stabilisation de l'équation des ondes,, RAIRO Modél. Math. Anal. Numér., 30 (1996), 607. Google Scholar

[3]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, "Representation and Control of Infinite Dimensional Systems,", Second edition, (2007). Google Scholar

[4]

F. Bourquin, M. Joly, M. Collet and L. Ratier, An efficient feedback control algorithm for beams: Experimental investigations,, Journal of Sound and Vibration, 278 (2004), 181. doi: 10.1016/j.jsv.2003.10.053. Google Scholar

[5]

H. Brezis, "Functional Analysis, Sobolev Spaces and Partial Differential Equations,", Springer, (2011). Google Scholar

[6]

J.-S. Briffaut., "Méthodes Numériques Pour le Contrôle et la Stabilisation Rapide des Grandes Strucutures Flexibles,", PhD thesis, (1999). Google Scholar

[7]

T. Cazenave and A. Haraux, "An Introduction to Semilinear Evolution Equations,", Oxford University Press, (1998). Google Scholar

[8]

G. Chen, Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain,, J. Math. Pures Appl. 58 (1979), 58 (1979), 249. Google Scholar

[9]

K. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations,", Springer-Verlag, (2000). Google Scholar

[10]

F. Flandoli, I. Lasiecka and R. Triggiani, Algebraic Riccati equations with nonsmoothing observation arising in hyperbolic and Euler-Bernoulli boundary control problems,, Ann. Mat. Pura Appl., 153 (1988), 307. doi: 10.1007/BF01762397. Google Scholar

[11]

D. L. Kleinman, An easy way to stabilize a linear constant system,, IEEE Transactions on Automatic Control, 15 (1970). doi: 10.1109/TAC.1970.1099612. Google Scholar

[12]

V. Komornik, Rapid boundary stabilization of linear distributed systems,, SIAM J. Control Optim., 35 (1997), 1591. doi: 10.1137/S0363012996301609. Google Scholar

[13]

V. Komornik, Rapid boundary stabilization of Maxwell's equations,, in, (1998), 611. Google Scholar

[14]

V. Komornik and P. Loreti, "Fourier Series in Control Theory,", Springer-Verlag, (2005). Google Scholar

[15]

J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation,, J. Differential Equations, 50 (1983), 163. doi: 10.1016/0022-0396(83)90073-6. Google Scholar

[16]

I. Lasiecka and R. Triggiani, Regularity of hyperbolic equations under $L_{2}(0,T;L_{2}(\Gamma ))$-Dirichlet boundary terms,, Appl. Math. Optim., 10 (1983), 275. doi: 10.1007/BF01448390. Google Scholar

[17]

I. Lasiecka and R. Triggiani, Uniform exponential energy decay of wave equations in a bounded region with $L_2(0,\infty; L_2(\Gamma))$-feedback control in the Dirichlet boundary conditions,, J. Differential Equations, 66 (1987), 340. doi: 10.1016/0022-0396(87)90025-8. Google Scholar

[18]

I. Lasiecka and R.Triggiani, "Control Theory for Partial Differential Equations: Continuous and Approximation Theories, volume II, Abstract Hyperbolic-like Systems over a Finite Time Horizon,", Cambridge University Press, (2000). Google Scholar

[19]

J.-L. Lions, Exact controllability, stabilizability and perturbations for distributed systems,, SIAM Rev., 30 (1988), 1. doi: 10.1137/1030001. Google Scholar

[20]

D. L. Lukes, Stabilizability and optimal control,, Funkcial. Ekvac., 11 (1968), 39. Google Scholar

[21]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Springer-Verlag, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[22]

J. P. Quinn and D. L. Russell, Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping,, Proc. Roy. Soc. Edinburgh Sect. A, 77 (1977), 97. Google Scholar

[23]

D. L. Russell, "Mathematics of Finite-Dimensional Control Systems,", Marcel Dekker Inc., (1979). Google Scholar

[24]

M. Slemrod, A note on complete controllability and stabilizability for linear control systems in Hilbert space,, SIAM J. Control, 12 (1974), 500. doi: 10.1137/0312038. Google Scholar

[25]

A. Smyshlyaev, B.-Z. Guo and M. Krstic, Arbitrary decay rate for Euler-Bernoulli beam by backstepping boundary feedback,, IEEE Trans. Automat. Control, 54 (2009), 1134. doi: 10.1109/TAC.2009.2013038. Google Scholar

[26]

J. M. Urquiza, Rapid exponential feedback stabilization with unbounded control operators,, SIAM J. Control Optim., 43 (2005), 2233. doi: 10.1137/S0363012901388452. Google Scholar

[27]

A. Vest, Rapid stabilization in a semigroup framework,, Preprint, (). Google Scholar

[28]

H. Zwart, Invertible solutions of the Lyapunov and algebraic Riccati equation,, preprint, (). Google Scholar

[1]

Lorena Bociu, Steven Derochers, Daniel Toundykov. Feedback stabilization of a linear hydro-elastic system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1107-1132. doi: 10.3934/dcdsb.2018144

[2]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[3]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[4]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[5]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[6]

Eduardo Cerpa, Emmanuelle Crépeau. Rapid exponential stabilization for a linear Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 655-668. doi: 10.3934/dcdsb.2009.11.655

[7]

Eduardo Cerpa. Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 91-102. doi: 10.3934/cpaa.2010.9.91

[8]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

[9]

Tuhin Ghosh, Karthik Iyer. Cloaking for a quasi-linear elliptic partial differential equation. Inverse Problems & Imaging, 2018, 12 (2) : 461-491. doi: 10.3934/ipi.2018020

[10]

Shui-Hung Hou, Qing-Xu Yan. Nonlinear locally distributed feedback stabilization. Journal of Industrial & Management Optimization, 2008, 4 (1) : 67-79. doi: 10.3934/jimo.2008.4.67

[11]

Stéphane Mischler, Qilong Weng. On a linear runs and tumbles equation. Kinetic & Related Models, 2017, 10 (3) : 799-822. doi: 10.3934/krm.2017032

[12]

Kaïs Ammari, Thomas Duyckaerts, Armen Shirikyan. Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation. Mathematical Control & Related Fields, 2016, 6 (1) : 1-25. doi: 10.3934/mcrf.2016.6.1

[13]

Ionuţ Munteanu. Exponential stabilization of the stochastic Burgers equation by boundary proportional feedback. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2173-2185. doi: 10.3934/dcds.2019091

[14]

Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic & Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039

[15]

Nguyen H. Sau, Vu N. Phat. LP approach to exponential stabilization of singular linear positive time-delay systems via memory state feedback. Journal of Industrial & Management Optimization, 2018, 14 (2) : 583-596. doi: 10.3934/jimo.2017061

[16]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[17]

Peter Šepitka. Riccati equations for linear Hamiltonian systems without controllability condition. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1685-1730. doi: 10.3934/dcds.2019074

[18]

Nicolo' Catapano. The rigorous derivation of the Linear Landau equation from a particle system in a weak-coupling limit. Kinetic & Related Models, 2018, 11 (3) : 647-695. doi: 10.3934/krm.2018027

[19]

Haibo Jin, Long Hai, Xiaoliang Tang. An optimal maintenance strategy for multi-state systems based on a system linear integral equation and dynamic programming. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-26. doi: 10.3934/jimo.2018188

[20]

Kaïs Ammari, Mohamed Jellouli, Michel Mehrenberger. Feedback stabilization of a coupled string-beam system. Networks & Heterogeneous Media, 2009, 4 (1) : 19-34. doi: 10.3934/nhm.2009.4.19

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]