September  2013, 2(3): 495-516. doi: 10.3934/eect.2013.2.495

Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations

1. 

Lavryentyev Institute of Hydrodynamics, Siberian Division of Russian Academy of Sciences, Lavryentyev pr. 15, Novosibirsk 630090, Russian Federation

2. 

Institut Élie Cartan Nancy, UMR7502 Université Lorraine, CNRS, INRIA, Laboratoire de Mathématiques, 54506 Vandoeuvre-lès-Nancy Cedex, France

Received  March 2013 Revised  May 2013 Published  July 2013

The flow around a rigid obstacle is governed by the compressible Navier-Stokes equations. The nonhomogeneous Dirichlet problem is considered in a bounded domain in two spatial dimensions with a compact obstacle in its interior. The flight of the airflow is characterized by the work shape functional, to be minimized over a family of admissible obstacles. The lift of the airfoil is a given function of temporal variable and should be maintain closed to the flight scenario. The continuity of the work functional with respect to the shape of obstacle in two spatial dimensions is shown for a wide class of admissible obstacles compact with respect to the Kuratowski-Mosco convergence.
    The dependence of small perturbations of approximate solutions to the governing equations with respect to the boundary variations of obstacles is analyzed for the nonstationary state equation.
Citation: Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations. Evolution Equations & Control Theory, 2013, 2 (3) : 495-516. doi: 10.3934/eect.2013.2.495
References:
[1]

E. Feireisl and E. Friedmann, Continuity of drag and domain stability in the low Mach number limits,, J. Math. Fluid Mech., 14 (2012), 731. doi: 10.1007/s00021-012-0106-1. Google Scholar

[2]

G. Frémiot, W. Horn, A. Laurain, M. Rao and J. Sokołowski, On the analysis of boundary value problems in nonsmooth domains,, Dissertationes Math., 462 (2009), 1. doi: 10.4064/dm462-0-1. Google Scholar

[3]

A. Kaźmierczak, P. I. Plotnikov, J. Sokołowski and A. .Zochowski, Numerical method for drag minimization in compressible flows,, in, (): 97. Google Scholar

[4]

P.-L. Lions, "Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible Models,", Clarendon Press, (1998). Google Scholar

[5]

M. Moubachir and J.-P. Zolésio, "Moving Shape Analysis and Control: Applications to Fluid Structure Interactions,", Chapman & Hall/CRC, (2006). doi: 10.1201/9781420003246. Google Scholar

[6]

P. I. Plotnikov and J. Sokolowski, "Compressible Navier-Stokes Equations. Theory and Shape Optimization,", Birkhäuser, (2012). Google Scholar

[7]

P. I. Plotnikov, E. V. Ruban and J. Sokołowski, Inhomogeneous boundary value problems for compressible Navier-Stokes equations, well-posedness and sensitivity analysis,, SIAM J. Math. Anal., 40 (2008), 1152. doi: 10.1137/070694272. Google Scholar

[8]

P. I. Plotnikov, E. V. Ruban and J. Sokołowski, Inhomogeneous boundary value problems for compressible Navier-Stokes and transport equations,, J. Math. Pures Appl., 92 (2009), 113. doi: 10.1016/j.matpur.2009.02.001. Google Scholar

[9]

P. I. Plotnikov and J. Sokołowski, On compactness, domain dependence and existence of steady state solutions to compressible isothermal Navier-Stokes equations,, J. Math. Fluid Mech., 7 (2005), 529. doi: 10.1007/s00021-004-0134-6. Google Scholar

[10]

P. I. Plotnikov and J. Sokołowski, Concentrations of solutions to time-discretized compressible Navier -Stokes equations,, Comm. Math. Phys., 258 (2005), 567. doi: 10.1007/s00220-005-1358-x. Google Scholar

[11]

P. I. Plotnikov and J. Sokołowski, Domain dependence of solutions to compressible Navier-Stokes equations,, SIAM J. Control Optim., 45 (2006), 1165. doi: 10.1137/050635304. Google Scholar

[12]

P. I. Plotnikov and J. Sokołowski, Stationary boundary value problems for compressible Navier-Stokes equations,, in, VI (2008), 313. doi: 10.1016/S1874-5733(08)80022-8. Google Scholar

[13]

P. I. Plotnikov and J. Sokołowski, Shape derivative of drag functional,, SIAM J. Control Optim., 48 (2010), 4680. doi: 10.1137/090758179. Google Scholar

[14]

P. Plotnikov, J. Sokołowski and A. .Zochowski, Numerical experiments in drag minimization for compressible Navier-Stokes flows in bounded domains,, in, (2009), 37. Google Scholar

[15]

J. Sokołowski and J.-P. Zolésio, "Introduction to Shape Optimization. Shape Sensitivity Analysis,", Springer Ser. Comput. Math., 16 (1992). Google Scholar

[16]

V. Šverák, On optimal shape design,, J. Math. Pures Appl., 72 (1993), 537. Google Scholar

show all references

References:
[1]

E. Feireisl and E. Friedmann, Continuity of drag and domain stability in the low Mach number limits,, J. Math. Fluid Mech., 14 (2012), 731. doi: 10.1007/s00021-012-0106-1. Google Scholar

[2]

G. Frémiot, W. Horn, A. Laurain, M. Rao and J. Sokołowski, On the analysis of boundary value problems in nonsmooth domains,, Dissertationes Math., 462 (2009), 1. doi: 10.4064/dm462-0-1. Google Scholar

[3]

A. Kaźmierczak, P. I. Plotnikov, J. Sokołowski and A. .Zochowski, Numerical method for drag minimization in compressible flows,, in, (): 97. Google Scholar

[4]

P.-L. Lions, "Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible Models,", Clarendon Press, (1998). Google Scholar

[5]

M. Moubachir and J.-P. Zolésio, "Moving Shape Analysis and Control: Applications to Fluid Structure Interactions,", Chapman & Hall/CRC, (2006). doi: 10.1201/9781420003246. Google Scholar

[6]

P. I. Plotnikov and J. Sokolowski, "Compressible Navier-Stokes Equations. Theory and Shape Optimization,", Birkhäuser, (2012). Google Scholar

[7]

P. I. Plotnikov, E. V. Ruban and J. Sokołowski, Inhomogeneous boundary value problems for compressible Navier-Stokes equations, well-posedness and sensitivity analysis,, SIAM J. Math. Anal., 40 (2008), 1152. doi: 10.1137/070694272. Google Scholar

[8]

P. I. Plotnikov, E. V. Ruban and J. Sokołowski, Inhomogeneous boundary value problems for compressible Navier-Stokes and transport equations,, J. Math. Pures Appl., 92 (2009), 113. doi: 10.1016/j.matpur.2009.02.001. Google Scholar

[9]

P. I. Plotnikov and J. Sokołowski, On compactness, domain dependence and existence of steady state solutions to compressible isothermal Navier-Stokes equations,, J. Math. Fluid Mech., 7 (2005), 529. doi: 10.1007/s00021-004-0134-6. Google Scholar

[10]

P. I. Plotnikov and J. Sokołowski, Concentrations of solutions to time-discretized compressible Navier -Stokes equations,, Comm. Math. Phys., 258 (2005), 567. doi: 10.1007/s00220-005-1358-x. Google Scholar

[11]

P. I. Plotnikov and J. Sokołowski, Domain dependence of solutions to compressible Navier-Stokes equations,, SIAM J. Control Optim., 45 (2006), 1165. doi: 10.1137/050635304. Google Scholar

[12]

P. I. Plotnikov and J. Sokołowski, Stationary boundary value problems for compressible Navier-Stokes equations,, in, VI (2008), 313. doi: 10.1016/S1874-5733(08)80022-8. Google Scholar

[13]

P. I. Plotnikov and J. Sokołowski, Shape derivative of drag functional,, SIAM J. Control Optim., 48 (2010), 4680. doi: 10.1137/090758179. Google Scholar

[14]

P. Plotnikov, J. Sokołowski and A. .Zochowski, Numerical experiments in drag minimization for compressible Navier-Stokes flows in bounded domains,, in, (2009), 37. Google Scholar

[15]

J. Sokołowski and J.-P. Zolésio, "Introduction to Shape Optimization. Shape Sensitivity Analysis,", Springer Ser. Comput. Math., 16 (1992). Google Scholar

[16]

V. Šverák, On optimal shape design,, J. Math. Pures Appl., 72 (1993), 537. Google Scholar

[1]

Anna Kaźmierczak, Jan Sokolowski, Antoni Zochowski. Drag minimization for the obstacle in compressible flow using shape derivatives and finite volumes. Mathematical Control & Related Fields, 2018, 8 (1) : 89-115. doi: 10.3934/mcrf.2018004

[2]

Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623

[3]

Barbara Kaltenbacher, Gunther Peichl. The shape derivative for an optimization problem in lithotripsy. Evolution Equations & Control Theory, 2016, 5 (3) : 399-430. doi: 10.3934/eect.2016011

[4]

Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825

[5]

Andrzej Nowakowski, Jan Sokolowski. On dual dynamic programming in shape control. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2473-2485. doi: 10.3934/cpaa.2012.11.2473

[6]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[7]

Günter Leugering, Jan Sokołowski, Antoni Żochowski. Control of crack propagation by shape-topological optimization. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2625-2657. doi: 10.3934/dcds.2015.35.2625

[8]

Jonathan Zinsl. The gradient flow of a generalized Fisher information functional with respect to modified Wasserstein distances. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 919-933. doi: 10.3934/dcdss.2017047

[9]

Amin Boumenir. Determining the shape of a solid of revolution. Mathematical Control & Related Fields, 2019, 9 (3) : 509-515. doi: 10.3934/mcrf.2019023

[10]

Fabien Caubet, Carlos Conca, Matías Godoy. On the detection of several obstacles in 2D Stokes flow: Topological sensitivity and combination with shape derivatives. Inverse Problems & Imaging, 2016, 10 (2) : 327-367. doi: 10.3934/ipi.2016003

[11]

Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793

[12]

Boris Paneah. On the over determinedness of some functional equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 497-505. doi: 10.3934/dcds.2004.10.497

[13]

Jaroslav Haslinger, Raino A. E. Mäkinen, Jan Stebel. Shape optimization for Stokes problem with threshold slip boundary conditions. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1281-1301. doi: 10.3934/dcdss.2017069

[14]

Lok Ming Lui, Tsz Wai Wong, Wei Zeng, Xianfeng Gu, Paul M. Thompson, Tony F. Chan, Shing Tung Yau. Detection of shape deformities using Yamabe flow and Beltrami coefficients. Inverse Problems & Imaging, 2010, 4 (2) : 311-333. doi: 10.3934/ipi.2010.4.311

[15]

Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics, 2011, 3 (4) : 389-438. doi: 10.3934/jgm.2011.3.389

[16]

Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. Thermal control of the Souza-Auricchio model for shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 369-386. doi: 10.3934/dcdss.2013.6.369

[17]

Olha P. Kupenko, Rosanna Manzo. Shape stability of optimal control problems in coefficients for coupled system of Hammerstein type. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2967-2992. doi: 10.3934/dcdsb.2015.20.2967

[18]

Jonathan Touboul. Controllability of the heat and wave equations and their finite difference approximations by the shape of the domain. Mathematical Control & Related Fields, 2012, 2 (4) : 429-455. doi: 10.3934/mcrf.2012.2.429

[19]

Giovanni De Matteis, Gianni Manno. Lie algebra symmetry analysis of the Helfrich and Willmore surface shape equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 453-481. doi: 10.3934/cpaa.2014.13.453

[20]

Jonathan Touboul. Erratum on: Controllability of the heat and wave equations and their finite difference approximations by the shape of the domain. Mathematical Control & Related Fields, 2019, 9 (1) : 221-222. doi: 10.3934/mcrf.2019006

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]