June  2013, 2(2): 301-318. doi: 10.3934/eect.2013.2.301

Higher differentiability in the context of Besov spaces for a class of nonlocal functionals

1. 

University of Nebraskat-Lincoln, Department of Mathematics, 203 Avery Hall, PO BOX 880130, Lincoln NE 68588-0130, United States, United States

Received  November 2012 Revised  January 2013 Published  March 2013

The aim of this paper is to contribute to the nonlocal theory within the calculus of variations by studying two classes of nonlocal functionals. Since the nonlocal theory is not quite as developed as the local theory, a proof for the existence and uniqueness of minimizers is provided. However, the main result within the paper establishes the higher differentiability, in the context of Besov spaces, for minimizers of nonlocal functionals. This result is obtained under quadratic growth assumptions via the difference quotient method.
Citation: Mikil Foss, Joe Geisbauer. Higher differentiability in the context of Besov spaces for a class of nonlocal functionals. Evolution Equations & Control Theory, 2013, 2 (2) : 301-318. doi: 10.3934/eect.2013.2.301
References:
[1]

Tsegaye G. Ayele and Abraham N. Abebe, Properties of iterated norms in Nikol'skii-Besov type spaces with generalized smoothness,, Eurasian Mathematics Journal, 1 (2010), 20. Google Scholar

[2]

Viktor I. Burenkov, A theorem on iterated norms for Nikol'skii-Besov spaces and its application,, (Russian) Trudy Mat. Inst. Steklov., 181 (1988), 27. Google Scholar

[3]

Viktor I. Burenkov, "Sobolev Spaces on Domains,", Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], 137 (1998). Google Scholar

[4]

Bernard Dacorogna, "Direct Methods in the Calculus of Variations,", Second edition, 78 (2008). Google Scholar

[5]

Lawrence C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, 19 (1998). Google Scholar

[6]

Guy Gilboa and Stanley Osher, Nonlocal linear image regularization and supervised segmentation,, Multiscale Modeling & Simulation, 6 (2007), 595. doi: 10.1137/060669358. Google Scholar

[7]

Guy Gilboa and Stanley Osher, Nonlocal operators with applications to image processing,, Multiscale Modeling & Simulation, 7 (2008), 1005. doi: 10.1137/070698592. Google Scholar

[8]

Enrico Giusti, "Direct Methods in the Calculus of Variations,", World Scientific Publishing Co. Inc., (2003). doi: 10.1142/9789812795557. Google Scholar

[9]

Brittney Hinds and Petronela Radu, Dirichlet's principle and wellposedness of solutions for a nonlocal $p$-Laplacian system,, Applied Mathematics and Computation, 219 (2012), 1411. doi: 10.1016/j.amc.2012.07.045. Google Scholar

[10]

Giovanni Leoni, "A First Course in Sobolev Spaces,", Graduate Studies in Mathematics, 105 (2009). Google Scholar

show all references

References:
[1]

Tsegaye G. Ayele and Abraham N. Abebe, Properties of iterated norms in Nikol'skii-Besov type spaces with generalized smoothness,, Eurasian Mathematics Journal, 1 (2010), 20. Google Scholar

[2]

Viktor I. Burenkov, A theorem on iterated norms for Nikol'skii-Besov spaces and its application,, (Russian) Trudy Mat. Inst. Steklov., 181 (1988), 27. Google Scholar

[3]

Viktor I. Burenkov, "Sobolev Spaces on Domains,", Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], 137 (1998). Google Scholar

[4]

Bernard Dacorogna, "Direct Methods in the Calculus of Variations,", Second edition, 78 (2008). Google Scholar

[5]

Lawrence C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, 19 (1998). Google Scholar

[6]

Guy Gilboa and Stanley Osher, Nonlocal linear image regularization and supervised segmentation,, Multiscale Modeling & Simulation, 6 (2007), 595. doi: 10.1137/060669358. Google Scholar

[7]

Guy Gilboa and Stanley Osher, Nonlocal operators with applications to image processing,, Multiscale Modeling & Simulation, 7 (2008), 1005. doi: 10.1137/070698592. Google Scholar

[8]

Enrico Giusti, "Direct Methods in the Calculus of Variations,", World Scientific Publishing Co. Inc., (2003). doi: 10.1142/9789812795557. Google Scholar

[9]

Brittney Hinds and Petronela Radu, Dirichlet's principle and wellposedness of solutions for a nonlocal $p$-Laplacian system,, Applied Mathematics and Computation, 219 (2012), 1411. doi: 10.1016/j.amc.2012.07.045. Google Scholar

[10]

Giovanni Leoni, "A First Course in Sobolev Spaces,", Graduate Studies in Mathematics, 105 (2009). Google Scholar

[1]

Daniel Faraco, Jan Kristensen. Compactness versus regularity in the calculus of variations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 473-485. doi: 10.3934/dcdsb.2012.17.473

[2]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[3]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[4]

Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961

[5]

Huilian Jia, Lihe Wang, Fengping Yao, Shulin Zhou. Regularity theory in Orlicz spaces for the poisson and heat equations. Communications on Pure & Applied Analysis, 2008, 7 (2) : 407-416. doi: 10.3934/cpaa.2008.7.407

[6]

Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760

[7]

Daoyuan Fang, Chenyin Qian. Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Communications on Pure & Applied Analysis, 2014, 13 (2) : 585-603. doi: 10.3934/cpaa.2014.13.585

[8]

Minghua Yang, Jinyi Sun. Gevrey regularity and existence of Navier-Stokes-Nernst-Planck-Poisson system in critical Besov spaces. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1617-1639. doi: 10.3934/cpaa.2017078

[9]

P. Di Gironimo, L. D’Onofrio. On the regularity of minimizers to degenerate functionals. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1311-1318. doi: 10.3934/cpaa.2010.9.1311

[10]

Yushi Nakano, Shota Sakamoto. Spectra of expanding maps on Besov spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1779-1797. doi: 10.3934/dcds.2019077

[11]

Delfim F. M. Torres. Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 491-500. doi: 10.3934/cpaa.2004.3.491

[12]

Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417

[13]

Baoxiang Wang. E-Besov spaces and dissipative equations. Communications on Pure & Applied Analysis, 2004, 3 (4) : 883-919. doi: 10.3934/cpaa.2004.3.883

[14]

Hermann Brunner, Jingtang Ma. Abstract cascading multigrid preconditioners in Besov spaces. Communications on Pure & Applied Analysis, 2006, 5 (2) : 349-365. doi: 10.3934/cpaa.2006.5.349

[15]

Angelo B. Mingarelli. Nonlinear functionals in oscillation theory of matrix differential systems. Communications on Pure & Applied Analysis, 2004, 3 (1) : 75-84. doi: 10.3934/cpaa.2004.3.75

[16]

Guangcun Lu. The splitting lemmas for nonsmooth functionals on Hilbert spaces I. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2939-2990. doi: 10.3934/dcds.2013.33.2939

[17]

Nikos Katzourakis. Nonuniqueness in vector-valued calculus of variations in $L^\infty$ and some Linear elliptic systems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 313-327. doi: 10.3934/cpaa.2015.14.313

[18]

Gisella Croce, Nikos Katzourakis, Giovanni Pisante. $\mathcal{D}$-solutions to the system of vectorial Calculus of Variations in $L^∞$ via the singular value problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6165-6181. doi: 10.3934/dcds.2017266

[19]

Ioan Bucataru, Matias F. Dahl. Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations. Journal of Geometric Mechanics, 2009, 1 (2) : 159-180. doi: 10.3934/jgm.2009.1.159

[20]

Ivar Ekeland. From Frank Ramsey to René Thom: A classical problem in the calculus of variations leading to an implicit differential equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1101-1119. doi: 10.3934/dcds.2010.28.1101

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]