• Previous Article
    Rational decay rates for a PDE heat--structure interaction: A frequency domain approach
  • EECT Home
  • This Issue
  • Next Article
    Preface: Introduction to the Special Volume on Nonlinear PDEs and Control Theory with Applications
June  2013, 2(2): 193-232. doi: 10.3934/eect.2013.2.193

Stability analysis of non-linear plates coupled with Darcy flows

1. 

Department of Mathematics and Statistics, Texas Tech University, Lubbock TX, 79409-1042

2. 

Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409-1042, United States

Received  October 2012 Revised  January 2013 Published  March 2013

In this paper we study the dynamical response of a non-linear plate with viscous damping perturbed in both vertical and axial directions and interacting with Darcy flow. We first consider the problem for non-linear elastic body with damping coefficient; existence and uniqueness of the solution for the steady state problem is proven. The stability of the dynamical non-linear plate problem under certain conditions on the applied loads is investigated. Second, we explore the fluid structure interaction problem with Darcy flow in porous media. Energy functional for the displacement field of the plate and the gradient pressure of the fluid flow is built in an appropriate Sobolev type norm. We show that for a class of boundary conditions the energy functional is limited by the flux of mass through the inlet boundary.
Citation: Eugenio Aulisa, Akif Ibragimov, Emine Yasemen Kaya-Cekin. Stability analysis of non-linear plates coupled with Darcy flows. Evolution Equations & Control Theory, 2013, 2 (2) : 193-232. doi: 10.3934/eect.2013.2.193
References:
[1]

E. Aulisa, L. Bloshanskaya and A. Ibragimov, Long-term dynamics for well productivity index for nonlinear flows in porous media,, Journal of Mathematical Physics, 52 (2011). doi: 10.1063/1.3536463. Google Scholar

[2]

E. Aulisa, A. Cervone, S. Manservisi and P. Seshaiyer, A multilevel domain decomposition approach for studying coupled flow application,, Communications in Computational Physics, 6 (2009), 319. doi: 10.4208/cicp.2009.v6.p319. Google Scholar

[3]

Annalisa Quaini, Suncica Canic, Roland Glowinski, Stephen Igo, Craig J Hartley, William Zoghbi and Stephen Little, Validation of a 3D computational fluid-structure interaction model simulating flow through an elastic aperture,, Journal of Biomechanics, 45 (2012), 310. Google Scholar

[4]

I. D. Chueshov and I. Lasiecka, Long-time dynamics of von Karman semi-flows with non-linear boundary/interior damping,, Journal of Differential Equations, 233 (2007), 42. doi: 10.1016/j.jde.2006.09.019. Google Scholar

[5]

I. D. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping,, Memoirs of the AMS, (2008). Google Scholar

[6]

I. D. Chueshov, A global attractor for a fluid-plate interaction model accounting only for longitudinal deformations of the plate,, Mathematical Methods in the Applied Sciences, 34 (2011), 1801. doi: 10.1002/mma.1496. Google Scholar

[7]

Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem,, Discrete and Continuous Dynamical Systems, 9 (2003), 633. doi: 10.3934/dcds.2003.9.633. Google Scholar

[8]

L. C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, 19 (1998). Google Scholar

[9]

F. Flori and P. Orenga, Fluid-structure interaction: Analysis of a 3-D compressible model,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 753. doi: 10.1016/S0294-1449(00)00119-0. Google Scholar

[10]

D. G. Gorman, I. Trendafilova, A. J. Mulholland and J. Horacek, Analytical modeling and extraction of the modal behavior of a cantilever beam in fluid interaction,, Journal of Sound and Vibration, 308 (2007), 231. Google Scholar

[11]

C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate,, SIAM Journal on Mathematical Analysis, 40 (2008), 716. doi: 10.1137/070699196. Google Scholar

[12]

M. Grobbelaar-Van Dalsen, On a fluid-structure model in which the dynamics of the structure involves the shear stress due to the fluid,, Journal of Mathematical Fluid Mechanics, 10 (2008), 388. doi: 10.1007/s00021-006-0236-4. Google Scholar

[13]

M. Boulakia and S. Guerrero, A regularity result for a solid-fluid system associated to the compressible Navier-Stokes equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 777. doi: 10.1016/j.anihpc.2008.02.004. Google Scholar

[14]

M. Grobbelaar-Van Dalsen, Strong stability for a fluid-structure interaction model,, Math. Meth. Appl. Sci., 32 (2009), 1452. doi: 10.1002/mma.1104. Google Scholar

[15]

L. Hoang and A. Ibragimov, Structural stability of generalized Forchheimer equations for compressible fluids in porous media,, Nonlinearity, 24 (2011), 1. doi: 10.1088/0951-7715/24/1/001. Google Scholar

[16]

J. Hron and S. Turek, A monolithic FEM/multigrid solver for ALE formulation of fluid-structure interaction with application in biomechanics,, in, 53 (2006), 146. doi: 10.1007/3-540-34596-5_7. Google Scholar

[17]

E. Kaya, E. Aulisa, A. Ibragimov and P. Seshaiyer, A stability estimate for fluid structure interaction problem with non-linear beam,, Discrete And Continuous Dynamical Systems, (2009), 424. Google Scholar

[18]

E. Kaya-Cekin, E. Aulisa, A. Ibragimov and P. Seshaiyer, Stability analysis of inhomogeneous equilibrium for axially and transversely excited nonlinear beam,, Communications on Pure and Applied Analysis, 10 (2011), 1447. doi: 10.3934/cpaa.2011.10.1447. Google Scholar

[19]

E. Kaya-Cekin, E. Aulisa, A. Ibragimov and P. Seshaiyer, Fluid structure interaction problem with changing thickness non-linear beam,, Discrete And Continuous Dynamical Systems, (2011), 813. Google Scholar

[20]

A. Kh. Khanmamedov, Global attractors for von Karman equations with nonlinear interior dissipation,, Journal of Mathematical Analysis and Applications, 318 (2006), 92. doi: 10.1016/j.jmaa.2005.05.031. Google Scholar

[21]

H. Koch and I. Lasiecka, Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity-full von Karman systems,, in, 50 (2002), 197. Google Scholar

[22]

I. Kukavica and A. Tuffaha, Solutions to a fluid-structure interaction free boundary problem,, Discrete And Continuous Dynamical Systems, 32 (2012), 1355. doi: 10.3934/dcds.2012.32.1355. Google Scholar

[23]

J. E. Lagnese, Modelling and stabilization of nonlinear plates,, in, 100 (1991), 247. Google Scholar

[24]

J. E. Lagnese, "Boundary Stabilization of Thin Plates,", SIAM Studies in Applied Mathematics, 10 (1989). doi: 10.1137/1.9781611970821. Google Scholar

[25]

I. Lasiecka, Uniform stabilizability of a full von Karman system with nonlinear boundary feedback,, SIAM J. Control Optim., 36 (1998), 1376. doi: 10.1137/S0363012996301907. Google Scholar

[26]

V. G. Maz'ya, "Sobolev Spaces,", $2^{nd}$ augmented edition, (2011). Google Scholar

[27]

M. Muskat, "The Flow of Homogeneous Fluids Through Porous Media,", McGraw-Hill, (1937). Google Scholar

[28]

V. V. Novozhilov, "Foundations of the Nonlinear Theory of Elasticity,", Dover Publication, (1999). Google Scholar

[29]

J. Y. Park and J. R. Kang, Global existence and stability for a von Karman equations with memory in noncylindrical domains,, Journal of Mathematical Physics, 50 (2009). doi: 10.1063/1.3253977. Google Scholar

[30]

J.-P. Puel and M. Tucsnak, Boundary stabilization for the von Kármán equations,, SIAM J. Control Optim., 33 (1995), 255. doi: 10.1137/S0363012992228350. Google Scholar

[31]

N. Peake and S. V. Sorokin, A nonlinear model of the dynamics of a large elastic plate with heavy fluid loading,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 2205. doi: 10.1098/rspa.2006.1673. Google Scholar

[32]

J. Peradze, A numerical algorithm for Kirchhoff-type nonlinear static beam,, Journal of Applied Mathematics, 2009 (2009). doi: 10.1155/2009/818269. Google Scholar

[33]

M. Sathyamoorthy, "Nonlinear Analysis of Structures,", CRC, (1998). Google Scholar

[34]

D. Tataru and M. Tucsnak, On the Cauchy problem for the full von Kármán system,, Nonlinear Differential Equations Appl., 4 (1997), 325. doi: 10.1007/s000300050018. Google Scholar

[35]

D. Coutand and S. Shkoller, Motion of an elastic solid inside an incompressible viscous fluid,, Arch. Ration. Mech. Anal., 176 (2005), 25. doi: 10.1007/s00205-004-0340-7. Google Scholar

[36]

L. Yang and C. Zhong, Global attractor for plate equation with nonlinear damping,, Nonlinear Analysis: Theory, 69 (2008), 3802. doi: 10.1016/j.na.2007.10.016. Google Scholar

[37]

SIAM PDE Conference 2011 San-Diego, Book of Abstracts,, Available from: , (). Google Scholar

show all references

References:
[1]

E. Aulisa, L. Bloshanskaya and A. Ibragimov, Long-term dynamics for well productivity index for nonlinear flows in porous media,, Journal of Mathematical Physics, 52 (2011). doi: 10.1063/1.3536463. Google Scholar

[2]

E. Aulisa, A. Cervone, S. Manservisi and P. Seshaiyer, A multilevel domain decomposition approach for studying coupled flow application,, Communications in Computational Physics, 6 (2009), 319. doi: 10.4208/cicp.2009.v6.p319. Google Scholar

[3]

Annalisa Quaini, Suncica Canic, Roland Glowinski, Stephen Igo, Craig J Hartley, William Zoghbi and Stephen Little, Validation of a 3D computational fluid-structure interaction model simulating flow through an elastic aperture,, Journal of Biomechanics, 45 (2012), 310. Google Scholar

[4]

I. D. Chueshov and I. Lasiecka, Long-time dynamics of von Karman semi-flows with non-linear boundary/interior damping,, Journal of Differential Equations, 233 (2007), 42. doi: 10.1016/j.jde.2006.09.019. Google Scholar

[5]

I. D. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping,, Memoirs of the AMS, (2008). Google Scholar

[6]

I. D. Chueshov, A global attractor for a fluid-plate interaction model accounting only for longitudinal deformations of the plate,, Mathematical Methods in the Applied Sciences, 34 (2011), 1801. doi: 10.1002/mma.1496. Google Scholar

[7]

Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem,, Discrete and Continuous Dynamical Systems, 9 (2003), 633. doi: 10.3934/dcds.2003.9.633. Google Scholar

[8]

L. C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, 19 (1998). Google Scholar

[9]

F. Flori and P. Orenga, Fluid-structure interaction: Analysis of a 3-D compressible model,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 753. doi: 10.1016/S0294-1449(00)00119-0. Google Scholar

[10]

D. G. Gorman, I. Trendafilova, A. J. Mulholland and J. Horacek, Analytical modeling and extraction of the modal behavior of a cantilever beam in fluid interaction,, Journal of Sound and Vibration, 308 (2007), 231. Google Scholar

[11]

C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate,, SIAM Journal on Mathematical Analysis, 40 (2008), 716. doi: 10.1137/070699196. Google Scholar

[12]

M. Grobbelaar-Van Dalsen, On a fluid-structure model in which the dynamics of the structure involves the shear stress due to the fluid,, Journal of Mathematical Fluid Mechanics, 10 (2008), 388. doi: 10.1007/s00021-006-0236-4. Google Scholar

[13]

M. Boulakia and S. Guerrero, A regularity result for a solid-fluid system associated to the compressible Navier-Stokes equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 777. doi: 10.1016/j.anihpc.2008.02.004. Google Scholar

[14]

M. Grobbelaar-Van Dalsen, Strong stability for a fluid-structure interaction model,, Math. Meth. Appl. Sci., 32 (2009), 1452. doi: 10.1002/mma.1104. Google Scholar

[15]

L. Hoang and A. Ibragimov, Structural stability of generalized Forchheimer equations for compressible fluids in porous media,, Nonlinearity, 24 (2011), 1. doi: 10.1088/0951-7715/24/1/001. Google Scholar

[16]

J. Hron and S. Turek, A monolithic FEM/multigrid solver for ALE formulation of fluid-structure interaction with application in biomechanics,, in, 53 (2006), 146. doi: 10.1007/3-540-34596-5_7. Google Scholar

[17]

E. Kaya, E. Aulisa, A. Ibragimov and P. Seshaiyer, A stability estimate for fluid structure interaction problem with non-linear beam,, Discrete And Continuous Dynamical Systems, (2009), 424. Google Scholar

[18]

E. Kaya-Cekin, E. Aulisa, A. Ibragimov and P. Seshaiyer, Stability analysis of inhomogeneous equilibrium for axially and transversely excited nonlinear beam,, Communications on Pure and Applied Analysis, 10 (2011), 1447. doi: 10.3934/cpaa.2011.10.1447. Google Scholar

[19]

E. Kaya-Cekin, E. Aulisa, A. Ibragimov and P. Seshaiyer, Fluid structure interaction problem with changing thickness non-linear beam,, Discrete And Continuous Dynamical Systems, (2011), 813. Google Scholar

[20]

A. Kh. Khanmamedov, Global attractors for von Karman equations with nonlinear interior dissipation,, Journal of Mathematical Analysis and Applications, 318 (2006), 92. doi: 10.1016/j.jmaa.2005.05.031. Google Scholar

[21]

H. Koch and I. Lasiecka, Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity-full von Karman systems,, in, 50 (2002), 197. Google Scholar

[22]

I. Kukavica and A. Tuffaha, Solutions to a fluid-structure interaction free boundary problem,, Discrete And Continuous Dynamical Systems, 32 (2012), 1355. doi: 10.3934/dcds.2012.32.1355. Google Scholar

[23]

J. E. Lagnese, Modelling and stabilization of nonlinear plates,, in, 100 (1991), 247. Google Scholar

[24]

J. E. Lagnese, "Boundary Stabilization of Thin Plates,", SIAM Studies in Applied Mathematics, 10 (1989). doi: 10.1137/1.9781611970821. Google Scholar

[25]

I. Lasiecka, Uniform stabilizability of a full von Karman system with nonlinear boundary feedback,, SIAM J. Control Optim., 36 (1998), 1376. doi: 10.1137/S0363012996301907. Google Scholar

[26]

V. G. Maz'ya, "Sobolev Spaces,", $2^{nd}$ augmented edition, (2011). Google Scholar

[27]

M. Muskat, "The Flow of Homogeneous Fluids Through Porous Media,", McGraw-Hill, (1937). Google Scholar

[28]

V. V. Novozhilov, "Foundations of the Nonlinear Theory of Elasticity,", Dover Publication, (1999). Google Scholar

[29]

J. Y. Park and J. R. Kang, Global existence and stability for a von Karman equations with memory in noncylindrical domains,, Journal of Mathematical Physics, 50 (2009). doi: 10.1063/1.3253977. Google Scholar

[30]

J.-P. Puel and M. Tucsnak, Boundary stabilization for the von Kármán equations,, SIAM J. Control Optim., 33 (1995), 255. doi: 10.1137/S0363012992228350. Google Scholar

[31]

N. Peake and S. V. Sorokin, A nonlinear model of the dynamics of a large elastic plate with heavy fluid loading,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 2205. doi: 10.1098/rspa.2006.1673. Google Scholar

[32]

J. Peradze, A numerical algorithm for Kirchhoff-type nonlinear static beam,, Journal of Applied Mathematics, 2009 (2009). doi: 10.1155/2009/818269. Google Scholar

[33]

M. Sathyamoorthy, "Nonlinear Analysis of Structures,", CRC, (1998). Google Scholar

[34]

D. Tataru and M. Tucsnak, On the Cauchy problem for the full von Kármán system,, Nonlinear Differential Equations Appl., 4 (1997), 325. doi: 10.1007/s000300050018. Google Scholar

[35]

D. Coutand and S. Shkoller, Motion of an elastic solid inside an incompressible viscous fluid,, Arch. Ration. Mech. Anal., 176 (2005), 25. doi: 10.1007/s00205-004-0340-7. Google Scholar

[36]

L. Yang and C. Zhong, Global attractor for plate equation with nonlinear damping,, Nonlinear Analysis: Theory, 69 (2008), 3802. doi: 10.1016/j.na.2007.10.016. Google Scholar

[37]

SIAM PDE Conference 2011 San-Diego, Book of Abstracts,, Available from: , (). Google Scholar

[1]

Pascal Cherrier, Albert Milani. Hyperbolic equations of Von Karman type. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 125-137. doi: 10.3934/dcdss.2016.9.125

[2]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424

[3]

Tingting Liu, Qiaozhen Ma. Time-dependent asymptotic behavior of the solution for plate equations with linear memory. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4595-4616. doi: 10.3934/dcdsb.2018178

[4]

Daniele Garrisi, Vladimir Georgiev. Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4309-4328. doi: 10.3934/dcds.2017184

[5]

Franca Franchi, Barbara Lazzari, Roberta Nibbi. Uniqueness and stability results for non-linear Johnson-Segalman viscoelasticity and related models. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2111-2132. doi: 10.3934/dcdsb.2014.19.2111

[6]

Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations & Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241

[7]

Flank D. M. Bezerra, Vera L. Carbone, Marcelo J. D. Nascimento, Karina Schiabel. Pullback attractors for a class of non-autonomous thermoelastic plate systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3553-3571. doi: 10.3934/dcdsb.2017214

[8]

Irena Lasiecka, Justin Webster. Eliminating flutter for clamped von Karman plates immersed in subsonic flows. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1935-1969. doi: 10.3934/cpaa.2014.13.1935

[9]

Kurt Falk, Marc Kesseböhmer, Tobias Henrik Oertel-Jäger, Jens D. M. Rademacher, Tony Samuel. Preface: Diffusion on fractals and non-linear dynamics. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : ⅰ-ⅳ. doi: 10.3934/dcdss.201702i

[10]

Dmitry Dolgopyat. Bouncing balls in non-linear potentials. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 165-182. doi: 10.3934/dcds.2008.22.165

[11]

Dorin Ervin Dutkay and Palle E. T. Jorgensen. Wavelet constructions in non-linear dynamics. Electronic Research Announcements, 2005, 11: 21-33.

[12]

Armin Lechleiter. Explicit characterization of the support of non-linear inclusions. Inverse Problems & Imaging, 2011, 5 (3) : 675-694. doi: 10.3934/ipi.2011.5.675

[13]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

[14]

Feng-Yu Wang. Exponential convergence of non-linear monotone SPDEs. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5239-5253. doi: 10.3934/dcds.2015.35.5239

[15]

Shun Li, Peng-Fei Yao. Modeling of a nonlinear plate. Evolution Equations & Control Theory, 2012, 1 (1) : 155-169. doi: 10.3934/eect.2012.1.155

[16]

Michela Eleuteri, Jana Kopfov, Pavel Krej?. Fatigue accumulation in an oscillating plate. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 909-923. doi: 10.3934/dcdss.2013.6.909

[17]

Orazio Arena. A problem of boundary controllability for a plate. Evolution Equations & Control Theory, 2013, 2 (4) : 557-562. doi: 10.3934/eect.2013.2.557

[18]

Jaime Angulo, Carlos Matheus, Didier Pilod. Global well-posedness and non-linear stability of periodic traveling waves for a Schrödinger-Benjamin-Ono system. Communications on Pure & Applied Analysis, 2009, 8 (3) : 815-844. doi: 10.3934/cpaa.2009.8.815

[19]

Tommi Brander, Joonas Ilmavirta, Manas Kar. Superconductive and insulating inclusions for linear and non-linear conductivity equations. Inverse Problems & Imaging, 2018, 12 (1) : 91-123. doi: 10.3934/ipi.2018004

[20]

Yasir Ali, Arshad Alam Khan. Exact solution of magnetohydrodynamic slip flow and heat transfer over an oscillating and translating porous plate. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 595-606. doi: 10.3934/dcdss.2018034

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

[Back to Top]