• Previous Article
    On the exponential stabilization of a thermo piezoelectric/piezomagnetic system
  • EECT Home
  • This Issue
  • Next Article
    Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems
December  2012, 1(2): 297-314. doi: 10.3934/eect.2012.1.297

On the 2D free boundary Euler equation

1. 

Department of Mathematics, University of Southern California, Los Angeles, CA 90089

2. 

Department of Mathematics, The Petroleum Institute, Abu Dhabi

Received  May 2012 Revised  July 2012 Published  October 2012

We provide a new simple proof of local-in-time existence of regular solutions to the Euler equation on a domain with a free moving boundary and without surface tension in 2 space dimensions. We prove the existence under the condition that the initial velocity belongs to the Sobolev space $H^{2.5+δ}$ where $\delta>0$ is arbitrary.
Citation: Igor Kukavica, Amjad Tuffaha. On the 2D free boundary Euler equation. Evolution Equations & Control Theory, 2012, 1 (2) : 297-314. doi: 10.3934/eect.2012.1.297
References:
[1]

T. Alazard, N. Burq and C. Zuily, On the water-wave equations with surface tension,, Duke Math. J., 158 (2011), 413. Google Scholar

[2]

T. Alazard, N. Burq and C. Zuily, Low regularity Cauchy theory for the water-waves problem: canals and swimming pools,, Journeés Équations aux Dérivées Partielles, (2011). Google Scholar

[3]

D. M. Ambrose and N. Masmoudi, The zero surface tension limit of two-dimensional water waves,, Comm. Pure Appl. Math., 58 (2005), 1287. Google Scholar

[4]

D. M. Ambrose and N. Masmoudi, The zero surface tension limit of three-dimensional water waves,, Indiana Univ. Math. J., 58 (2009), 479. Google Scholar

[5]

J. Thomas Beale, The initial value problem for the Navier-Stokes equations with a free surface,, Comm. Pure Appl. Math., 34 (1981), 359. Google Scholar

[6]

J. T. Beale, T. Y. Hou, and J. S. Lowengrub, Growth rates for the linearized motion of fluid interfaces away from equilibrium,, Comm. Pure Appl. Math., 46 (1993), 1269. Google Scholar

[7]

D. Coutand and S. Shkoller, Well-posedness of the free-surface incompressible Euler equations with or without surface tension,, J. Amer. Math. Soc., 20 (2007), 829. Google Scholar

[8]

D. Coutand and S. Shkoller, A simple proof of well-posedness for the free-surface incompressible Euler equations,, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 429. Google Scholar

[9]

D. Christodoulou and H. Lindblad, On the motion of the free surface of a liquid,, Comm. Pure Appl. Math., 53 (2000), 1536. Google Scholar

[10]

D. G. Ebin, The equations of motion of a perfect fluid with free boundary are not well posed,, Comm. Partial Differential Equations, 12 (1987), 1175. Google Scholar

[11]

T. Iguchi, Well-posedness of the initial value problem for capillary-gravity waves,, Funkcial. Ekvac., 44 (2001), 219. Google Scholar

[12]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 891. Google Scholar

[13]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation,, J. Amer. Math. Soc., 4 (1991), 323. Google Scholar

[14]

I. Kukavica and A. Tuffaha, Solutions to a fluid-structure interaction free boundary problem,, Discrete Contin. Dyn. Syst., 32 (2012), 1355. Google Scholar

[15]

D. Lannes, Well-posedness of the water-waves equations,, J. Amer. Math. Soc., 18 (2005), 605. Google Scholar

[16]

H. Lindblad, Well-posedness for the linearized motion of an incompressible liquid with free surface boundary,, Comm. Pure Appl. Math., 56 (2003), 153. Google Scholar

[17]

H. Lindblad, Well-posedness for the motion of an incompressible liquid with free surface boundary,, Ann. of Math. (2), 162 (2005), 109. Google Scholar

[18]

V. I. Nalimov, The Cauchy-Poisson problem,, Dinamika Splošn. Sredy no. Vyp. 18 Dinamika Zidkost. so Svobod. Granicami, (1974), 104. Google Scholar

[19]

M. Ogawa and A. Tani, Free boundary problem for an incompressible ideal fluid with surface tension,, Math. Models Methods Appl. Sci., 12 (2002), 1725. Google Scholar

[20]

B. Schweizer, On the three-dimensional Euler equations with a free boundary subject to surface tension,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 753. Google Scholar

[21]

J. Shatah and C. Zeng, Geometry and a priori estimates for free boundary problems of the Euler equation,, Comm. Pure Appl. Math., 61 (2008), 698. Google Scholar

[22]

A. I. Shnirelman, The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid,, Mat. Sb. (N.S.), 128(170) (1985), 82. Google Scholar

[23]

A. Tani, Small-time existence for the three-dimensional Navier-Stokes equations for an incompressible fluid with a free surface,, Arch. Rational Mech. Anal., 133 (1996), 299. Google Scholar

[24]

T. Tao, Harmonic analysis,, , (). Google Scholar

[25]

S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in $2$-D,, Invent. Math., 130 (1997), 39. Google Scholar

[26]

S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D,, J. Amer. Math. Soc., 12 (1999), 445. Google Scholar

[27]

L. Xu and Z. Zhang, On the free boundary problem to the two viscous immiscible fluids,, J. Differential Equations, 248 (2010), 1044. Google Scholar

[28]

H. Yosihara, Gravity waves on the free surface of an incompressible perfect fluid of finite depth,, Publ. Res. Inst. Math. Sci., 18 (1982), 49. Google Scholar

[29]

H. Yosihara, Capillary-gravity waves for an incompressible ideal fluid,, J. Math. Kyoto Univ., 23 (1983), 649. Google Scholar

[30]

P. Zhang and Z. Zhang, On the free boundary problem of three-dimensional incompressible Euler equations,, Comm. Pure Appl. Math., 61 (2008), 877. Google Scholar

show all references

References:
[1]

T. Alazard, N. Burq and C. Zuily, On the water-wave equations with surface tension,, Duke Math. J., 158 (2011), 413. Google Scholar

[2]

T. Alazard, N. Burq and C. Zuily, Low regularity Cauchy theory for the water-waves problem: canals and swimming pools,, Journeés Équations aux Dérivées Partielles, (2011). Google Scholar

[3]

D. M. Ambrose and N. Masmoudi, The zero surface tension limit of two-dimensional water waves,, Comm. Pure Appl. Math., 58 (2005), 1287. Google Scholar

[4]

D. M. Ambrose and N. Masmoudi, The zero surface tension limit of three-dimensional water waves,, Indiana Univ. Math. J., 58 (2009), 479. Google Scholar

[5]

J. Thomas Beale, The initial value problem for the Navier-Stokes equations with a free surface,, Comm. Pure Appl. Math., 34 (1981), 359. Google Scholar

[6]

J. T. Beale, T. Y. Hou, and J. S. Lowengrub, Growth rates for the linearized motion of fluid interfaces away from equilibrium,, Comm. Pure Appl. Math., 46 (1993), 1269. Google Scholar

[7]

D. Coutand and S. Shkoller, Well-posedness of the free-surface incompressible Euler equations with or without surface tension,, J. Amer. Math. Soc., 20 (2007), 829. Google Scholar

[8]

D. Coutand and S. Shkoller, A simple proof of well-posedness for the free-surface incompressible Euler equations,, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 429. Google Scholar

[9]

D. Christodoulou and H. Lindblad, On the motion of the free surface of a liquid,, Comm. Pure Appl. Math., 53 (2000), 1536. Google Scholar

[10]

D. G. Ebin, The equations of motion of a perfect fluid with free boundary are not well posed,, Comm. Partial Differential Equations, 12 (1987), 1175. Google Scholar

[11]

T. Iguchi, Well-posedness of the initial value problem for capillary-gravity waves,, Funkcial. Ekvac., 44 (2001), 219. Google Scholar

[12]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 891. Google Scholar

[13]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation,, J. Amer. Math. Soc., 4 (1991), 323. Google Scholar

[14]

I. Kukavica and A. Tuffaha, Solutions to a fluid-structure interaction free boundary problem,, Discrete Contin. Dyn. Syst., 32 (2012), 1355. Google Scholar

[15]

D. Lannes, Well-posedness of the water-waves equations,, J. Amer. Math. Soc., 18 (2005), 605. Google Scholar

[16]

H. Lindblad, Well-posedness for the linearized motion of an incompressible liquid with free surface boundary,, Comm. Pure Appl. Math., 56 (2003), 153. Google Scholar

[17]

H. Lindblad, Well-posedness for the motion of an incompressible liquid with free surface boundary,, Ann. of Math. (2), 162 (2005), 109. Google Scholar

[18]

V. I. Nalimov, The Cauchy-Poisson problem,, Dinamika Splošn. Sredy no. Vyp. 18 Dinamika Zidkost. so Svobod. Granicami, (1974), 104. Google Scholar

[19]

M. Ogawa and A. Tani, Free boundary problem for an incompressible ideal fluid with surface tension,, Math. Models Methods Appl. Sci., 12 (2002), 1725. Google Scholar

[20]

B. Schweizer, On the three-dimensional Euler equations with a free boundary subject to surface tension,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 753. Google Scholar

[21]

J. Shatah and C. Zeng, Geometry and a priori estimates for free boundary problems of the Euler equation,, Comm. Pure Appl. Math., 61 (2008), 698. Google Scholar

[22]

A. I. Shnirelman, The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid,, Mat. Sb. (N.S.), 128(170) (1985), 82. Google Scholar

[23]

A. Tani, Small-time existence for the three-dimensional Navier-Stokes equations for an incompressible fluid with a free surface,, Arch. Rational Mech. Anal., 133 (1996), 299. Google Scholar

[24]

T. Tao, Harmonic analysis,, , (). Google Scholar

[25]

S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in $2$-D,, Invent. Math., 130 (1997), 39. Google Scholar

[26]

S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D,, J. Amer. Math. Soc., 12 (1999), 445. Google Scholar

[27]

L. Xu and Z. Zhang, On the free boundary problem to the two viscous immiscible fluids,, J. Differential Equations, 248 (2010), 1044. Google Scholar

[28]

H. Yosihara, Gravity waves on the free surface of an incompressible perfect fluid of finite depth,, Publ. Res. Inst. Math. Sci., 18 (1982), 49. Google Scholar

[29]

H. Yosihara, Capillary-gravity waves for an incompressible ideal fluid,, J. Math. Kyoto Univ., 23 (1983), 649. Google Scholar

[30]

P. Zhang and Z. Zhang, On the free boundary problem of three-dimensional incompressible Euler equations,, Comm. Pure Appl. Math., 61 (2008), 877. Google Scholar

[1]

Chengchun Hao. Cauchy problem for viscous shallow water equations with surface tension. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 593-608. doi: 10.3934/dcdsb.2010.13.593

[2]

Marcelo M. Disconzi, Igor Kukavica. A priori estimates for the 3D compressible free-boundary Euler equations with surface tension in the case of a liquid. Evolution Equations & Control Theory, 2019, 8 (3) : 503-542. doi: 10.3934/eect.2019025

[3]

Calin Iulian Martin. Dispersion relations for periodic water waves with surface tension and discontinuous vorticity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3109-3123. doi: 10.3934/dcds.2014.34.3109

[4]

Jie Wang, Xiaoqiang Wang. New asymptotic analysis method for phase field models in moving boundary problem with surface tension. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3185-3213. doi: 10.3934/dcdsb.2015.20.3185

[5]

Vera Mikyoung Hur. On the formation of singularities for surface water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1465-1474. doi: 10.3934/cpaa.2012.11.1465

[6]

Daniel Coutand, Steve Shkoller. A simple proof of well-posedness for the free-surface incompressible Euler equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 429-449. doi: 10.3934/dcdss.2010.3.429

[7]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[8]

Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087

[9]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[10]

Chengchun Hao. Remarks on the free boundary problem of compressible Euler equations in physical vacuum with general initial densities. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2885-2931. doi: 10.3934/dcdsb.2015.20.2885

[11]

Harunori Monobe, Hirokazu Ninomiya. Multiple existence of traveling waves of a free boundary problem describing cell motility. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 789-799. doi: 10.3934/dcdsb.2014.19.789

[12]

Aimin Huang, Roger Temam. The nonlinear 2D subcritical inviscid shallow water equations with periodicity in one direction. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2005-2038. doi: 10.3934/cpaa.2014.13.2005

[13]

Bum Ja Jin, Mariarosaria Padula. In a horizontal layer with free upper surface. Communications on Pure & Applied Analysis, 2002, 1 (3) : 379-415. doi: 10.3934/cpaa.2002.1.379

[14]

Octavian G. Mustafa. On isolated vorticity regions beneath the water surface. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1523-1535. doi: 10.3934/cpaa.2012.11.1523

[15]

Denys Dutykh, Dimitrios Mitsotakis. On the relevance of the dam break problem in the context of nonlinear shallow water equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 799-818. doi: 10.3934/dcdsb.2010.13.799

[16]

Madalina Petcu, Roger Temam. An interface problem: The two-layer shallow water equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5327-5345. doi: 10.3934/dcds.2013.33.5327

[17]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

[18]

Vincent Duchêne, Samer Israwi, Raafat Talhouk. Shallow water asymptotic models for the propagation of internal waves. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 239-269. doi: 10.3934/dcdss.2014.7.239

[19]

Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431

[20]

Yoshihiro Shibata. Global well-posedness of unsteady motion of viscous incompressible capillary liquid bounded by a free surface. Evolution Equations & Control Theory, 2018, 7 (1) : 117-152. doi: 10.3934/eect.2018007

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]