# American Institute of Mathematical Sciences

June  2012, 1(1): 17-42. doi: 10.3934/eect.2012.1.17

## On Kelvin-Voigt model and its generalizations

 1 Mathematical Institute of Charles University, Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Prague, Czech Republic, Czech Republic 2 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77845, United States

Received  October 2011 Revised  February 2012 Published  March 2012

We consider a generalization of the Kelvin-Voigt model where the elastic part of the Cauchy stress depends non-linearly on the linearized strain and the dissipative part of the Cauchy stress is a nonlinear function of the symmetric part of the velocity gradient. The assumption that the Cauchy stress depends non-linearly on the linearized strain can be justified if one starts with the assumption that the kinematical quantity, the left Cauchy-Green stretch tensor, is a nonlinear function of the Cauchy stress, and linearizes under the assumption that the displacement gradient is small. Long-time and large data existence, uniqueness and regularity properties of weak solution to such a generalized Kelvin-Voigt model are established for the non-homogeneous mixed boundary value problem. The main novelty with regard to the mathematical analysis consists in including nonlinear (non-quadratic) dissipation in the problem.
Citation: Miroslav Bulíček, Josef Málek, K. R. Rajagopal. On Kelvin-Voigt model and its generalizations. Evolution Equations & Control Theory, 2012, 1 (1) : 17-42. doi: 10.3934/eect.2012.1.17
##### References:
 [1] M. Bulíček, F. Ettwein, P. Kaplický and D. Pražák, On uniqueness and time regularity of flows of power-law like non-Newtonian fluids,, Math. Methods Appl. Sci., 33 (2010), 1995. Google Scholar [2] M. Bulíček, P. Gwiazda, J. Málek, K. R. Rajagopal and A. Świerczewska-Gwiazda, On flows of fluids described by an implicit constitutive equation characterized by a maximal monotone graph,, in, (2012). Google Scholar [3] M. Bulíček, P. Gwiazda, J. Málek and A. Świerczewska-Gwiazda, On unsteady flows of implicitly constituted incompressible fluids,, SIAM J. Math. Anal., (2011). Google Scholar [4] E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations,", McGraw-Hill Book Company, (1955). Google Scholar [5] L. Diening, M. Růžička and J. Wolf, Existence of weak solutions for unsteady motions of generalized Newtonian fluids,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9 (2010), 1. Google Scholar [6] E. Emmrich and M. Thalhammer, Convergence of a time discretisation for doubly nonlinear evolution equations of second order,, Found. Comput. Math., 10 (2010), 171. doi: 10.1007/s10208-010-9061-5. Google Scholar [7] E. Feireisl, "Dynamics of Viscous Compressible Fluids," Oxford Lecture Series in Mathematics and its Applications, 26,, Oxford University Press, (2004). Google Scholar [8] E. Feireisl and A. Novotný, "Singular Limits in Thermodynamics of Viscous Fluids,", Advances in Mathematical Fluid Mechanics, (2009). Google Scholar [9] J. Frehse, J. Málek and M. Růžička, Large data existence result for unsteady flows of inhomogeneous shear-thickening heat-conducting incompressible fluids,, Comm. Partial Differential Equations, 35 (2010), 1891. Google Scholar [10] J. Frehse and M. Růžička, Non-homogeneous generalized Newtonian fluids,, Math. Z., 260 (2008), 355. doi: 10.1007/s00209-007-0278-1. Google Scholar [11] A. Friedman and J. Nečas, Systems of nonlinear wave equations with nonlinear viscosity,, Pacific J. Math., 135 (1988), 29. Google Scholar [12] G. Friesecke and G. Dolzmann, Implicit time discretization and global existence for a quasi-linear evolution equation with nonconvex energy,, SIAM J. Math. Anal., 28 (1997), 363. doi: 10.1137/S0036141095285958. Google Scholar [13] Y. Fung, "Biomechanics: Mechanical Properties of Living Tissues,", Springer-Verlag, (1993). Google Scholar [14] A. Kufner, O. John and S. Fučík, "Function Spaces,", Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis, (1977). Google Scholar [15] J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", Dunod, (1969). Google Scholar [16] J. Málek, J. Nečas and M. Růžička, On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: The case $p\geq2$,, Adv. Differential Equations, 6 (2001), 257. Google Scholar [17] J. Málek, J. Nečas, M. Rokyta and M. Růžička, "Weak and Measure-Valued Solutions to Evolutionary PDEs,", Applied Mathematics and Mathematical Computation, 13 (1996). Google Scholar [18] K. R. Rajagopal, A note on a reappraisal and generalization of the Kelvin-Voigt Model,, Mechanics Research Communications, 36 (2009), 232. doi: 10.1016/j.mechrescom.2008.09.005. Google Scholar [19] W. Ramberg and W. R. Osgood, Description of stress-strain curves by three parameters,, Technical Notes Nat. Adv. Comm. Aeronaut., 1943 (1943). Google Scholar [20] W. Thompson, On the elasticity and viscosity of metals,, Proc. Roy. Soc. London A, 14 (1865), 289. doi: 10.1098/rspl.1865.0052. Google Scholar [21] B. Tvedt, Quasilinear equations for viscoelasticity of strain-rate type,, Arch. Ration. Mech. Anal., 189 (2008), 237. doi: 10.1007/s00205-007-0109-x. Google Scholar [22] W. Voigt, Ueber innere Reibung fester Körper, insbesondere der Metalle,, Annalen der Physik, 283 (1892), 671. doi: 10.1002/andp.18922831210. Google Scholar

show all references

##### References:
 [1] M. Bulíček, F. Ettwein, P. Kaplický and D. Pražák, On uniqueness and time regularity of flows of power-law like non-Newtonian fluids,, Math. Methods Appl. Sci., 33 (2010), 1995. Google Scholar [2] M. Bulíček, P. Gwiazda, J. Málek, K. R. Rajagopal and A. Świerczewska-Gwiazda, On flows of fluids described by an implicit constitutive equation characterized by a maximal monotone graph,, in, (2012). Google Scholar [3] M. Bulíček, P. Gwiazda, J. Málek and A. Świerczewska-Gwiazda, On unsteady flows of implicitly constituted incompressible fluids,, SIAM J. Math. Anal., (2011). Google Scholar [4] E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations,", McGraw-Hill Book Company, (1955). Google Scholar [5] L. Diening, M. Růžička and J. Wolf, Existence of weak solutions for unsteady motions of generalized Newtonian fluids,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9 (2010), 1. Google Scholar [6] E. Emmrich and M. Thalhammer, Convergence of a time discretisation for doubly nonlinear evolution equations of second order,, Found. Comput. Math., 10 (2010), 171. doi: 10.1007/s10208-010-9061-5. Google Scholar [7] E. Feireisl, "Dynamics of Viscous Compressible Fluids," Oxford Lecture Series in Mathematics and its Applications, 26,, Oxford University Press, (2004). Google Scholar [8] E. Feireisl and A. Novotný, "Singular Limits in Thermodynamics of Viscous Fluids,", Advances in Mathematical Fluid Mechanics, (2009). Google Scholar [9] J. Frehse, J. Málek and M. Růžička, Large data existence result for unsteady flows of inhomogeneous shear-thickening heat-conducting incompressible fluids,, Comm. Partial Differential Equations, 35 (2010), 1891. Google Scholar [10] J. Frehse and M. Růžička, Non-homogeneous generalized Newtonian fluids,, Math. Z., 260 (2008), 355. doi: 10.1007/s00209-007-0278-1. Google Scholar [11] A. Friedman and J. Nečas, Systems of nonlinear wave equations with nonlinear viscosity,, Pacific J. Math., 135 (1988), 29. Google Scholar [12] G. Friesecke and G. Dolzmann, Implicit time discretization and global existence for a quasi-linear evolution equation with nonconvex energy,, SIAM J. Math. Anal., 28 (1997), 363. doi: 10.1137/S0036141095285958. Google Scholar [13] Y. Fung, "Biomechanics: Mechanical Properties of Living Tissues,", Springer-Verlag, (1993). Google Scholar [14] A. Kufner, O. John and S. Fučík, "Function Spaces,", Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis, (1977). Google Scholar [15] J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", Dunod, (1969). Google Scholar [16] J. Málek, J. Nečas and M. Růžička, On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: The case $p\geq2$,, Adv. Differential Equations, 6 (2001), 257. Google Scholar [17] J. Málek, J. Nečas, M. Rokyta and M. Růžička, "Weak and Measure-Valued Solutions to Evolutionary PDEs,", Applied Mathematics and Mathematical Computation, 13 (1996). Google Scholar [18] K. R. Rajagopal, A note on a reappraisal and generalization of the Kelvin-Voigt Model,, Mechanics Research Communications, 36 (2009), 232. doi: 10.1016/j.mechrescom.2008.09.005. Google Scholar [19] W. Ramberg and W. R. Osgood, Description of stress-strain curves by three parameters,, Technical Notes Nat. Adv. Comm. Aeronaut., 1943 (1943). Google Scholar [20] W. Thompson, On the elasticity and viscosity of metals,, Proc. Roy. Soc. London A, 14 (1865), 289. doi: 10.1098/rspl.1865.0052. Google Scholar [21] B. Tvedt, Quasilinear equations for viscoelasticity of strain-rate type,, Arch. Ration. Mech. Anal., 189 (2008), 237. doi: 10.1007/s00205-007-0109-x. Google Scholar [22] W. Voigt, Ueber innere Reibung fester Körper, insbesondere der Metalle,, Annalen der Physik, 283 (1892), 671. doi: 10.1002/andp.18922831210. Google Scholar
 [1] Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021 [2] Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029 [3] Kaïs Ammari, Thomas Duyckaerts, Armen Shirikyan. Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation. Mathematical Control & Related Fields, 2016, 6 (1) : 1-25. doi: 10.3934/mcrf.2016.6.1 [4] Louis Tebou. Stabilization of some elastodynamic systems with localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7117-7136. doi: 10.3934/dcds.2016110 [5] Faustino Sánchez-Garduño, Philip K. Maini, Judith Pérez-Velázquez. A non-linear degenerate equation for direct aggregation and traveling wave dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 455-487. doi: 10.3934/dcdsb.2010.13.455 [6] Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191 [7] Daniele Garrisi, Vladimir Georgiev. Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4309-4328. doi: 10.3934/dcds.2017184 [8] Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485 [9] Xiaobin Yao, Qiaozhen Ma, Tingting Liu. Asymptotic behavior for stochastic plate equations with rotational inertia and Kelvin-Voigt dissipative term on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1889-1917. doi: 10.3934/dcdsb.2018247 [10] Manil T. Mohan. On the three dimensional Kelvin-Voigt fluids: global solvability, exponential stability and exact controllability of Galerkin approximations. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020007 [11] Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099 [12] César E. Torres Ledesma. Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well. Communications on Pure & Applied Analysis, 2016, 15 (2) : 535-547. doi: 10.3934/cpaa.2016.15.535 [13] Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124 [14] José M. Amigó, Isabelle Catto, Ángel Giménez, José Valero. Attractors for a non-linear parabolic equation modelling suspension flows. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 205-231. doi: 10.3934/dcdsb.2009.11.205 [15] Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 [16] Igor Kukavica, Mohammed Ziane. Regularity of the Navier-Stokes equation in a thin periodic domain with large data. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 67-86. doi: 10.3934/dcds.2006.16.67 [17] Franca Franchi, Barbara Lazzari, Roberta Nibbi. Uniqueness and stability results for non-linear Johnson-Segalman viscoelasticity and related models. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2111-2132. doi: 10.3934/dcdsb.2014.19.2111 [18] Dan-Andrei Geba, Manoussos G. Grillakis. Large data global regularity for the classical equivariant Skyrme model. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5537-5576. doi: 10.3934/dcds.2018244 [19] Victor Zvyagin, Vladimir Orlov. Weak solvability of fractional Voigt model of viscoelasticity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6327-6350. doi: 10.3934/dcds.2018270 [20] Hua Qiu. Regularity criteria of smooth solution to the incompressible viscoelastic flow. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2873-2888. doi: 10.3934/cpaa.2013.12.2873

2018 Impact Factor: 1.048