June  2012, 1(1): 109-140. doi: 10.3934/eect.2012.1.109

Certain questions of feedback stabilization for Navier-Stokes equations

1. 

Department of Mechanics & Mathematics, Moscow State University, Moscow 119991

2. 

Department of Mechanics and Mathematics, Moscow State University, 119991 Moscow, Russian Federation

Received  November 2011 Revised  February 2012 Published  March 2012

The authors study the stabilization problem for Navier-Stokes and Oseen equations near steady-state solution by feedback control. The cases of control in initial condition (start control) as well as impulse and distributed controls in right side supported in a fixed subdomain of the domain $G$ filled with a fluid are investigated. The cases of bounded and unbounded domain $G$ are considered.
Citation: Andrei Fursikov, Alexey V. Gorshkov. Certain questions of feedback stabilization for Navier-Stokes equations. Evolution Equations & Control Theory, 2012, 1 (1) : 109-140. doi: 10.3934/eect.2012.1.109
References:
[1]

M. S. Agranovich and M. I. Vishik, Elliptic boundary problems with parameter and parabolic problems of general type, (Russian),, Russian Math. Surveys, 19 (1964), 43. doi: 10.1070/RM1964v019n03ABEH001149. Google Scholar

[2]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", Studies in Mathematics and its Applications, 25 (1992). Google Scholar

[3]

V. Barbu, Feedback stabilization of Navier-Stokes equations,, ESAIM Control, 9 (2003), 197. doi: 10.1051/cocv:2003009. Google Scholar

[4]

V. Barbu, I. Lasiecka and R. Triggiani, Abstract setting of tangential boundary stabilization of Navier-Stokes equations by high- and low-gain feedback controllers,, Nonlinear Analysis, 64 (2006), 2704. doi: 10.1016/j.na.2005.09.012. Google Scholar

[5]

V. Barbu, S. Rodrigues and A. Shirikyan, Internal exponential stabilization to a non-stationary solution for 3D Navier-Stokes equations,, 2010, (). Google Scholar

[6]

V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimentional controllers,, Indiana Univ. Math. J., 53 (2004), 1443. doi: 10.1512/iumj.2004.53.2445. Google Scholar

[7]

A. V. Fursikov, Stabilizability of quasilinear parabolic equation by feedback boundary control,, Sbornik: Mathematics, 192 (2001), 593. doi: 10.1070/SM2001v192n04ABEH000560. Google Scholar

[8]

A. V. Fursikov, Stabilizability of two-dimensional Navier-Stokes equations with help of boundary feedback control,, J. of Math. Fluid Mechanics, 3 (2001), 259. doi: 10.1007/PL00000972. Google Scholar

[9]

A. V. Fursikov, Feedback stabilization for the 2D Navier-Stokes equations,, in, 223 (2002), 179. Google Scholar

[10]

A. V. Fursikov, Feedback stabilization for the 2D Oseen equations: Additional remarks,, in, 143 (2002), 169. Google Scholar

[11]

A. V. Fursikov, Stabilization for the 3D Navier-Stokes system by feedback boundary control. Partial Differential Equations and Applications,, Discrete and Cont. Dyn. Syst., 10 (2004), 289. Google Scholar

[12]

A. V. Fursikov, Real process corresponding to 3D Navier-Stokes system, and its feedback stabilization from boundary,, in, 206 (2002), 95. Google Scholar

[13]

A. V. Fursikov, Real processes and realizability of a stabilization method for Navier-Stokes equations by boundary feedback control,, in, 2 (2002), 137. Google Scholar

[14]

A. V. Fursikov, "Optimal Control of Distributed Systems. Theory and Applications,", Transl. of Math. Mongraphs, 187 (2000). Google Scholar

[15]

A. V. Fursikov, Local existence theorems with unbounded set of input data and unboundedness of stable invariant manifolds for 3D Navier-Stokes equations,, Discrete and Continuous Dynamical System, 3 (2010), 269. doi: 10.3934/dcdss.2010.3.269. Google Scholar

[16]

A. V. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolution Equations,", Lecture Notes Ser., 34 (1996). Google Scholar

[17]

A. V. Fursikov and O. Yu. Imanuvilov, Exact controllability of Navier-Stokes and Boussinesq equations,, Russian Math. Surveys, 54 (1999), 565. doi: 10.1070/RM1999v054n03ABEH000153. Google Scholar

[18]

Th. Gallay and C. E. Wayne, Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on $\mathbbR^2$,, Arch. Ration. Mech. Anal., 163 (2002), 209. doi: 10.1007/s002050200200. Google Scholar

[19]

A. V. Gorshkov, Stabilization of the one-dimensional heat equation on a semibounded rod,, Uspekhi Mat. Nauk, 56 (2001), 213. doi: 10.1070/RM2001v056n02ABEH000388. Google Scholar

[20]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, 840 (1981). Google Scholar

[21]

K. Iosida, "Functional Analysis,", Springer-Verlag, (1965). Google Scholar

[22]

A. A. Ivanchikov, On numerical stabilization of unstable Couette flow by the boundary conditions,, Russ. J. Numer. Anal. Math. Modelling, 21 (2006), 519. doi: 10.1515/rnam.2006.21.6.519. Google Scholar

[23]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,", Revised English edition, (1963). Google Scholar

[24]

O. A. Ladyžhenskaya and V. A. Solonnikov, On linearization principle and invariant manifolds for problems of magnetichydromechanics, (Russian), Boundary Value Problems of Mathematical Physics and Related Questions in the Theory of Functions, 38 (1973), 46. Google Scholar

[25]

J.-L. Lions and E. Magenes, Problémes aux Limites Non Homogénes et Applications,, Vol. 1, (1968). Google Scholar

[26]

J. E. Marsden and M. McCracken, "The Hopf Bifurcation and Its Applications,", Applied Mathematical Sciences, (1976). Google Scholar

[27]

J.-P. Raymond, Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations,, J. Math. Pures Appl. (9), 87 (2007), 627. doi: 10.1016/j.matpur.2007.04.002. Google Scholar

[28]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", Third editon, 2 (1984). Google Scholar

[29]

M. I. Vishik and A. V. Fursikov, "Mathematical Problems of Statistical Hydromechanics,", Kluwer Acad. Publ., (1988). Google Scholar

show all references

References:
[1]

M. S. Agranovich and M. I. Vishik, Elliptic boundary problems with parameter and parabolic problems of general type, (Russian),, Russian Math. Surveys, 19 (1964), 43. doi: 10.1070/RM1964v019n03ABEH001149. Google Scholar

[2]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", Studies in Mathematics and its Applications, 25 (1992). Google Scholar

[3]

V. Barbu, Feedback stabilization of Navier-Stokes equations,, ESAIM Control, 9 (2003), 197. doi: 10.1051/cocv:2003009. Google Scholar

[4]

V. Barbu, I. Lasiecka and R. Triggiani, Abstract setting of tangential boundary stabilization of Navier-Stokes equations by high- and low-gain feedback controllers,, Nonlinear Analysis, 64 (2006), 2704. doi: 10.1016/j.na.2005.09.012. Google Scholar

[5]

V. Barbu, S. Rodrigues and A. Shirikyan, Internal exponential stabilization to a non-stationary solution for 3D Navier-Stokes equations,, 2010, (). Google Scholar

[6]

V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimentional controllers,, Indiana Univ. Math. J., 53 (2004), 1443. doi: 10.1512/iumj.2004.53.2445. Google Scholar

[7]

A. V. Fursikov, Stabilizability of quasilinear parabolic equation by feedback boundary control,, Sbornik: Mathematics, 192 (2001), 593. doi: 10.1070/SM2001v192n04ABEH000560. Google Scholar

[8]

A. V. Fursikov, Stabilizability of two-dimensional Navier-Stokes equations with help of boundary feedback control,, J. of Math. Fluid Mechanics, 3 (2001), 259. doi: 10.1007/PL00000972. Google Scholar

[9]

A. V. Fursikov, Feedback stabilization for the 2D Navier-Stokes equations,, in, 223 (2002), 179. Google Scholar

[10]

A. V. Fursikov, Feedback stabilization for the 2D Oseen equations: Additional remarks,, in, 143 (2002), 169. Google Scholar

[11]

A. V. Fursikov, Stabilization for the 3D Navier-Stokes system by feedback boundary control. Partial Differential Equations and Applications,, Discrete and Cont. Dyn. Syst., 10 (2004), 289. Google Scholar

[12]

A. V. Fursikov, Real process corresponding to 3D Navier-Stokes system, and its feedback stabilization from boundary,, in, 206 (2002), 95. Google Scholar

[13]

A. V. Fursikov, Real processes and realizability of a stabilization method for Navier-Stokes equations by boundary feedback control,, in, 2 (2002), 137. Google Scholar

[14]

A. V. Fursikov, "Optimal Control of Distributed Systems. Theory and Applications,", Transl. of Math. Mongraphs, 187 (2000). Google Scholar

[15]

A. V. Fursikov, Local existence theorems with unbounded set of input data and unboundedness of stable invariant manifolds for 3D Navier-Stokes equations,, Discrete and Continuous Dynamical System, 3 (2010), 269. doi: 10.3934/dcdss.2010.3.269. Google Scholar

[16]

A. V. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolution Equations,", Lecture Notes Ser., 34 (1996). Google Scholar

[17]

A. V. Fursikov and O. Yu. Imanuvilov, Exact controllability of Navier-Stokes and Boussinesq equations,, Russian Math. Surveys, 54 (1999), 565. doi: 10.1070/RM1999v054n03ABEH000153. Google Scholar

[18]

Th. Gallay and C. E. Wayne, Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on $\mathbbR^2$,, Arch. Ration. Mech. Anal., 163 (2002), 209. doi: 10.1007/s002050200200. Google Scholar

[19]

A. V. Gorshkov, Stabilization of the one-dimensional heat equation on a semibounded rod,, Uspekhi Mat. Nauk, 56 (2001), 213. doi: 10.1070/RM2001v056n02ABEH000388. Google Scholar

[20]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, 840 (1981). Google Scholar

[21]

K. Iosida, "Functional Analysis,", Springer-Verlag, (1965). Google Scholar

[22]

A. A. Ivanchikov, On numerical stabilization of unstable Couette flow by the boundary conditions,, Russ. J. Numer. Anal. Math. Modelling, 21 (2006), 519. doi: 10.1515/rnam.2006.21.6.519. Google Scholar

[23]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,", Revised English edition, (1963). Google Scholar

[24]

O. A. Ladyžhenskaya and V. A. Solonnikov, On linearization principle and invariant manifolds for problems of magnetichydromechanics, (Russian), Boundary Value Problems of Mathematical Physics and Related Questions in the Theory of Functions, 38 (1973), 46. Google Scholar

[25]

J.-L. Lions and E. Magenes, Problémes aux Limites Non Homogénes et Applications,, Vol. 1, (1968). Google Scholar

[26]

J. E. Marsden and M. McCracken, "The Hopf Bifurcation and Its Applications,", Applied Mathematical Sciences, (1976). Google Scholar

[27]

J.-P. Raymond, Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations,, J. Math. Pures Appl. (9), 87 (2007), 627. doi: 10.1016/j.matpur.2007.04.002. Google Scholar

[28]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", Third editon, 2 (1984). Google Scholar

[29]

M. I. Vishik and A. V. Fursikov, "Mathematical Problems of Statistical Hydromechanics,", Kluwer Acad. Publ., (1988). Google Scholar

[1]

A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 289-314. doi: 10.3934/dcds.2004.10.289

[2]

Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Global stabilization of the Navier-Stokes equations around an unstable equilibrium state with a boundary feedback controller. Evolution Equations & Control Theory, 2015, 4 (1) : 89-106. doi: 10.3934/eect.2015.4.89

[3]

Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Boundary stabilization of the Navier-Stokes equations with feedback controller via a Galerkin method. Evolution Equations & Control Theory, 2014, 3 (1) : 147-166. doi: 10.3934/eect.2014.3.147

[4]

Jean-Pierre Raymond, Laetitia Thevenet. Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1159-1187. doi: 10.3934/dcds.2010.27.1159

[5]

Takayuki Kubo, Ranmaru Matsui. On pressure stabilization method for nonstationary Navier-Stokes equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2283-2307. doi: 10.3934/cpaa.2018109

[6]

Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1169-1208. doi: 10.3934/dcds.2012.32.1169

[7]

V. V. Chepyzhov, A. A. Ilyin. On the fractal dimension of invariant sets: Applications to Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 117-135. doi: 10.3934/dcds.2004.10.117

[8]

Tomás Caraballo, Peter E. Kloeden, José Real. Invariant measures and Statistical solutions of the globally modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 761-781. doi: 10.3934/dcdsb.2008.10.761

[9]

Fabio Ramos, Edriss S. Titi. Invariant measures for the $3$D Navier-Stokes-Voigt equations and their Navier-Stokes limit. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 375-403. doi: 10.3934/dcds.2010.28.375

[10]

Enrique Fernández-Cara. Motivation, analysis and control of the variable density Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1021-1090. doi: 10.3934/dcdss.2012.5.1021

[11]

Varga K. Kalantarov, Edriss S. Titi. Global stabilization of the Navier-Stokes-Voight and the damped nonlinear wave equations by finite number of feedback controllers. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1325-1345. doi: 10.3934/dcdsb.2018153

[12]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[13]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[14]

P.E. Kloeden, Pedro Marín-Rubio, José Real. Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 785-802. doi: 10.3934/cpaa.2009.8.785

[15]

Elena Braverman, Alexandra Rodkina. Stabilization of difference equations with noisy proportional feedback control. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2067-2088. doi: 10.3934/dcdsb.2017085

[16]

G. M. de Araújo, S. B. de Menezes. On a variational inequality for the Navier-Stokes operator with variable viscosity. Communications on Pure & Applied Analysis, 2006, 5 (3) : 583-596. doi: 10.3934/cpaa.2006.5.583

[17]

Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations. Evolution Equations & Control Theory, 2013, 2 (3) : 495-516. doi: 10.3934/eect.2013.2.495

[18]

Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349

[19]

Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433

[20]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]